An implementation of WHAM: the
Weighted Histogram Analysis Method
Version 2.1.0

Alan Grossfield

Contents
1 Introduction 3
1.1 Newinrelease 2.1.0 3
1.2 New in release 2.0.11 4
1.3 New in release 2.0.10.1 4
1.4 New inrelease 2.0.10 4
1.5 Newinrelease 2.0.9 4
1.6 Newinrelease 2.0.8 4
1.7 New in release 2.0.7 oo 4
1.8 Newinrelease 2.0.6 5
1.9 New in release 2.0.4 and 2.0.5 5
2 Installation 6
3 Command line arguments and file formats 6
3.1 wham 7
3.1.1 Command line arguments for WHAM 7
3.1.2 Fileformats 8
3.1.3 Output. 10
3.2 wham-2d 11
3.2.1 Command line arguments 11
3.2.2 Fileformats 12
323 Output. 13
4 Discussion 14
4.1 Terminology: PMF vs. Free Energy Curve 14
4.2 Periodicity 15

4.3 Monte Carlo Bootstrap Error Analysis

4.4 Using the code for replica exchange simulations

1 Introduction

These programs (wham and wham-2d) implement the Weighted Histogram
Analysis Method of Kumar, et al (“Multidimensional free-energy calculations
using the weighted histogram analysis method”, J. Comput. Chem., 16:1339-
1350, 1995). The code generally follows the notation used by Benoit Roux
(“The calculation of the potential of mean force using computer simulations”,
Comput. Phys. Comm., 91:275-282, 1995). Consult these papers for the
theoretical background and justification for the method.

This code is available for download from my web page (http://membrane.
urmc.rochester.edu/content/wham/). The code doesn’t change all that of-
ten, but it’s probably worth checking periodically. If you run into trouble us-
ing these programs, feel free to contact me (alan_grossfield@urme.rochester.edu),
and I'll try to help you. This code is available under the GPL and BSD li-
censes, as you prefer. The exception to this licensing is a set of routines from
Numerical Recipes, which are not mine to give away.

If you use this code as part of an original piece of research, I’d appreciate
a reference or acknowledgment. There’s no publication to reference, so please
use something like:

Grossfield, A, “WHAM: an implementation of the weighted histogram analy-
sis method”, http://membrane.urmc.rochester.edu/content/wham/, ver-
sion XXXX

For that matter, just letting me know what you're using my code for would
be nice, although again I don’t insist upon it.

Suggestions and patches are welcome.

1.1 New in release 2.1.0

Two changes, both contributed by Alex Kohlmeyer. First, we switched from
old make to CMake for the build. Second, we changed how energy units are
set; where it used to be a compile-time option, now it is set on the command
line.

Small change to Makefile to correctly clean out the nr/ directory, sug-
gested by Lorenzo Rovigatti.

http://membrane.urmc.rochester.edu/content/wham/
http://membrane.urmc.rochester.edu/content/wham/
http://membrane.urmc.rochester.edu/content/wham/

1.2 New in release 2.0.11

Two small changes: I added a quick compile-time option to use reduced
energy units (suggested by Trung Dac Nguyen), and I fixed a compile problem
on gce 10 and later.

1.3 New in release 2.0.10.1

This is a bugfix release only — somehow, I managed to botch the packaging
and not release all of the files. Thanks to Jared Wood for spotting my
mistake.

1.4 New in release 2.0.10

This is a documentation-only release. Basically, 'm updating a bunch of the
advice I give, based on new experience. The main thing is I'm deprecating
the temperature-dependence code, both for computing free energy profiles
at a different temperature from the one the simulations were run at, and
for analyzing replica exchange. I don’t think the code is wrong per se, but
it’s not particularly reliable, and there are better methods out there (e.g.
MBAR).

1.5 New in release 2.0.9

The is a bug-fix release; there was a memory allocation error in wham-2d
that caused a segfault if the number of bins in the 2nd dimension was greater
than the number of windows. Caught by Bastien Loubet from the Center for
Biomembrane Physics in Denmark.

1.6 New in release 2.0.8

Major performance improvements to wham-2d (roughly 100x faster). The
final answers should be indistinguishable from previous versions. Code con-
tributed by Nikolay Plotnikov from Stanford’s Chemistry Department.

1.7 New in release 2.0.7

I messed up the ability to switch units from kcal to kJ: in addition to defining
k_B in the header files, I also had a define in wham_2d.c. Caught by Yi Yao

4

of UNC.

1.8 New in release 2.0.6

The primary new feature in version 2.0.6 is the ability to exclude regions of
a 2D reaction coordinate from a calculation, which we're calling “masking”.
This is useful in cases where the free energy profiles is being used to sample
a pathway that is two dimensional, but where large areas of the 2D sur-
face are either uninteresting or physically unattainable; for example, if the
two reaction coordinates are RMSDs from 2 distinct structures, it is almost
certainly impossible to sample the region where the RMS distance to each
structure is very small. In practice, you could generally do the calculation
anyway and just accept lots of NaNs and Infs floating around in the output,
but sometimes that would fail and this way is far cleaner and robust. In this
case, I chose to implement a very simple automasking procedure, such that
any bin that has no data from any window is excluded. I suppose I could
further generalize it, so that any bin with fewer than N points is excluded,
but I haven’t done that yet.

There’s one other trivial but often requested feature in version 2.0.6: if
you prefer to work in SI units, I've made it easier to switch energy units
from kcal to kJ (the units of your reaction coordinate are, as always, up to
you). It’s a compile-time choice, but I figure that’s fine because very few
people switch units constantly. The switch is easy — before you build the
code, edit wham/wham.h and wham-2d/wham-2d.h and change which version
of the constant k B is defined.

1.9 New in release 2.0.4 and 2.0.5

Version 2.0.5 is a trivial patch on 2.0.4, upping the length of lines allowed
when reading files.

Release 2.0.4 has seen major revision to the bootstrap error analysis. ['ve
known for a while that the way I computed the uncertainty in the free energy
was suboptimal, since it just extrapolated from the uncertainty in the proba-
bility using the assumption that the fluctuations were gaussianly distributed.
I knew this wasn’t a great assumption, but Michael Shirts showed me data
showing just how bad it was. So, in this version, we're doing something dif-
ferent. For 1D wham, we’re directly computing the fluctuations in the free
energy at each bin, aligning the pmfs such that their partition functions are

all 1; this amounts to shifting them so that their Boltzmann-weighted free
energies are the same. I think the errors make more sense now.

For 2D wham, I think doing this analysis uncovered some other flaws in
how the error analysis is done, ones that to be honest I'm not totally sure
how to fix. For now, I'm simply removing the option to do bootstrapping in
2D. I hope to put it back once I solve the problem, in which case I'll make
another release.

Many thanks to Michael Shirts, for helpful discussions and contributing
much of the code changes that went into this release.

2 Installation

Untarring wham.tgz will create a directory wham/, which in turn contains
several directories (wham/ wham-2d/ doc/ nr/).

As of version 2.1.0, we’ve switched to using Cmake for the build, which
should be simpler than the previous system. To build the code, you should:

mkdir build

cd build

cmake ..

cmake --build .

This will compile wham and wham-2d, with the intermediate files stored
in the CMakeFiles directory. You can use the two binaries directly, or install
them using:

cmake --install .

This will install them in /usr/local/bin. If you want to install them (plus
the docs) elsewhere, you would run

cmake --install . --prefix /my/install/prefix

3 Command line arguments and file formats

To get a listing of the command line arguments for either wham or wham-
2d, just run the command without any arguments. Optional arguments are
included in brackets. Both programs will echo their command line into the
output file, to help you figure out what you did.

6

3.1 wham

3.1.1 Command line arguments for WHAM

wham [units <real|metal|ljl|...>] [P|Ppi|Pval] hist_min hist_max num_bins \
tol temperature numpad metadatafile freefile [num_MC_trials randSeed]

The first optional argument specifies the units used for the reaction coor-
dinate. The default is kcal/mol, as before, but now there are other options
as well, adopted from the units used in LAMMPS:

e real: kcal/mol-Kelvin

e lj: sets kg = 1.0, so really a reduced unit

e metal: eV/Kelvin

e si: Joules/Kelvin

e cgs: ergs/Kelvin

e clectron: Hartrees/Kelvin

e micro: picogram-micrometer?/microsecond?-Kelvin

e nano: attogram-nanometer? /nanosecond?-Kelvin

The next (optional) argument specifies the periodicity of the reaction co-
ordinate. For a nonperiodic reaction coordinate (a distance, for example), it
should be left out. “P” means that the reaction coordinate has a periodicity
of 360, appropriate for angles. “Ppi” specifies a periodicity of 2*pi, appro-
priate for angles measured in radians. “Pval” specifies periodicity of some
arbitrary amount, val, which should be an integer or floating point num-
ber. For example, “P180.0” would be appropriate for an angle with twofold
symmetry.

hist_min and hist_max specify the boundaries of the histogram. As a rule,
all data points outside the range (hist_min, hist_max) are silently ignored.
The only exception is that if an entire trajectory is outside the range, the
program halts with an error message. The solution is to remove that file from
the metadata file. hist_min and hist_max should be floating point numbers.

num_bins specifies the number of bins in the histogram, and as a result
the number of points in the final free energy curve. It should be an integer.

7

tol is the convergence tolerance for the WHAM calculations. Specifically,
the WHAM iteration is considered to be converged when no F; value for
any simulation window changes by more than tol on consecutive iterations.
As the program runs, it prints the average change in the F values for the
most recent iteration. Obviously, this number will be smaller than tol before
the computation converges, because convergence is triggered by the largest
change as opposed to the average.

temperature is a floating point number representing the temperature in
Kelvin at which the weighted histogram calculation is performed. Strictly
speaking, this does not have to be the temperature at which the simulations
were performed (see below for discussion), but as a rule you’ll want them to
be same.

numpad specifies the number of “padding” values that should be printed
for periodic free energy curve. This number should be set to 0 for aperiodic
reaction coordinates. It doesn’t actually affect the calculation in any way.
Rather, it just alters the final printout of the free energy, to make plotting of
periodic reaction coordinates simpler. This is more important for wham-2d
than wham.

metadatafile specifies the name of the metadata file. The format of this
file is described below.

freefile is the name used for the file containing the final free energy curve
and probability distribution.

num_MC _trials and randSeed are both related to the performance of
Monte Carlo bootstrap error analysis. If these values are not supplied, error
analysis is not performed. num_MC_trials should be an integer specifying
the number of fake data sets which should be generated. randSeed is an
integer that controls the random number seed — the value you pick should be
irrelevant, but I let the user set it primarily for debugging purposes.

3.1.2 File formats

Each line of the metadata file should be blank, begin with a “#” (marking
a comment), or have the following format:

/path/to/timeseries/file loc_win_min spring [correl time] [temperature]

This first field is the name of one of the time series files (more on this in
a moment). The second field, loc_win_min, is the location of the minimum
of the biasing potential for this simulation, a floating point number. The

8

third field, spring, is the spring constant for the biasing potential used in
this simulation, assuming the biasing potential is of the format

V= ;k(x — x0)%. (1)

Many simulation packages, including TINKER, AMBER, and CHARMM,
do not include the % when they specify spring constants for their restraint
terms. This is a common source of error (I'd love to change my code to match
the other packages’ behavior, but then experienced users who don’t read the
manual would get messed up). Also, the units for the spring constant must
match those for the time series. So, if your time series is a distance recorded
in Angstroms, the spring constant must be in kcal/mol-A2. AMBER users
in particular should take care when using angular restraints: the specifica-
tion and output of angles is in degrees, but AMBER’s spring constants use
kcal /mol-rad?, so you’ll have to convert the units of the spring constants to
kcal/mol-deg? in the metadata file.

The fourth argument (“correl time”) specifies the decorrelation time for
your time series, in units of time steps. It is only used when generating
fake data sets for Monte Carlo bootstrap error analysis, where it modulates
the number of points per fake data set. This argument is optional, and is
ignored if you don’t do error analysis. If you're doing multiple temperatures
but not bootstrapping, set it to any integer value as a placeholder, and it’ll be
ignored. See section 4.3 for more discussion about how to do bootstrapping.

Finally, the last (optional) field is the temperature for this simulation. If
not supplied, the temperature specified on the command line is used. In the
present version of the code, you must either leave the temperature unspecified
for all simulations or specify it for all simulations.

The time series files must follow one of two formats, depending on whether
the temperature was specified in the metadata file. If no temperature was
specified, the file should contain two columns, where the first is the time
(which isn’t actually used), and the second is the position of the system
along the reaction coordinate. Both numbers should be in floating point
format. Lines beginning with “#” are ignored as comments. Additional
columns of data are ignored.

If the simulation temperature is specified, there must be a third column of
data, containing the system’s potential energy at that time point. It should
be a floating point value.

3.1.3 Output

The first line of the output file contains echoes command line. The next line
or two contain comments describing the periodicity used and the number of
simulation windows present. While the calculation is running, it will print
out lines that look like the following;:

#Iteration 10: 0.106019
#Iteration 20: 0.062269
#Iteration 30: 0.039890
#Iteration 40: 0.027003

This specifies the current iteration number, and the average change in the
F values for the current iteration. This number is not used for deciding when
the calculation has converged; rather, the maximum change, as opposed to
the average, is used.

Every 100 iterations, the current version of the free energy curve is
dumped into the output file. These lines look like

-178.000000 0.014212 4909.138943
-174.000000 0.062631 4525.390035
-170.000000 0.227076 3432.434076
-166.000000 0.494262 2190.487110
-162.000000 0.817734 1271.708620

The first column is the value of the reaction coordinate, the second is
the value of the free energy, and the third is the unnormalized probability
distribution.

Once the calculation has converged, wham will produce output resembling

Dumping simulation biases, in the metadata file order
Window F (free energy units)

0 0.000004
1 -4.166136
2 -3.241052
3 -4.475215
4 -6.324340
5 -7.128731

H OH H H B H H R

10

These are the final F values from the wham calculation, and can be used
for computing weighted averages for properties other than the free energy.

You may have noticed that all of the lines except the free energies are
preceded by “#”. This allows you to check convergence of your wham calcu-
lation by simply plotting the output file in gnuplot. If the free energy curves
have stopped changing, your tolerance is small enough. In most cases, a
tolerance value of 1079 is sufficient, but if your free energy curve has a wide
range of values lower tolerance might be needed, so it’s crucial that you check.

If you specified a nonzero number of Monte Carlo bootstrap error analysis
trials, you will see lines that resemble

#MC trial 0: 990 iterations
#MC trial 1: 973 iterations
#MC trial 2: 970 iterations
#MC trial 3: 981 iterations
#MC trial 4: 984 iterations

at the end of the file.
The free energy data file is written when the calculation converges, and
resembles:

#Coor Free +/- Prob

-178.000000 0.014386 0.000098 0.106389
-174.000000 0.068560 0.000151 0.097128
-170.000000 0.250825 0.000350 0.071496
-166.000000 0.523786 0.000294 0.045186

The first column is the value of the reaction coordinate, the second is the
free energy. The third is the statistical uncertainty of the free energy (which is
only meaningful if you performed Monte Carlo bootstrapping). The fourth
and fifth columns are the probability and it’s associated statistical uncer-
tainty. Again, the latter is only meaningful if bootstrapping is performed.
See section 4.3 for further discussion of error estimation.

3.2 wham-2d
3.2.1 Command line arguments

wham-2d Px[=0|pilval] hist_min_x hist_max_x num_bins_x \

11

+/-

0.000017
0.000025
0.000042
0.000022

Py[=0|pilval] hist_min_y hist_max_y num_bins_y \
tol temperature numpad metadatafile freefile \
use_mask

The command line arguments largely have the same meaning as they do
for the one dimensional wham program.

The periodicity arguments are not optional.

“Px” by itself indicates that the first dimension of the reaction coordinate
has a period of 360. “Px=0" turns off periodicity. “Px=pi” specifies a period
of 2*pi, and “Px=val” allows you to choose an arbitrary value for the period.

hist_min x, hist_max x, and num_bins_x behave exactly like hist_min,
hist_max, and num_bins do in the 1 dimensional program.

Py, hist_min_y, etc., behave the same as Px, hist_min_x, etc., except they
control the second coordinate of the free energy surface.

use_mask expects an integer value, and if its values is non-zero turns on
the automasking feature, which causes bins for which there is no sample data
to be excluded from the wham calculation.

3.2.2 File formats

As with regular 1 dimensional wham, each line of the metadata file should
either be blank, begin with a “#”, or have the following format

/path/to/timeseries/file loc_win_x loc_win_y spring_x spring_y [correl time] [temp]

This first field is the name of one of the time series files. loc_win_x and
loc_win_y are the locations of the minimum of the biasing terms in the first
and second dimensions of the reaction coordinate. spring x and spring_y
are the spring constants used for the biasing potential in this simulation,
assuming the biasing potential is of the format

V = Skl — 20 + kyly — 0)?) &)

The sixth argument (“correl time”) specifies the decorrelation time for
your time series, in units of time steps. It is only used when generating
fake data sets for Monte Carlo bootstrap error analysis, where it modulates
the number of points per fake data set. This argument is optional, and is
ignored if you don’t do error analysis. If you're doing multiple temperatures

12

but not bootstrapping, set it to any integer value as a placeholder, and it’ll be
ignored. See section 4.3 for more discussion about how to do bootstrapping.

Finally, the last field is the temperature this simulation was run at. If
not supplied, the temperature specified on the command line is used. In the
present version of the code, you must either leave the temperature unspecified
for all simulations or specify it for all simulations.

The time series files must follow one of two formats, depending on whether
the temperature was specified in the metadata file. If no temperature was
specified, the file should contain three columns, where the first is the time
(which isn’t actually used), and the second and third are the position of the
system along the x and y reaction coordinates, respectively. Both numbers
should be in floating point format. Lines beginning with “#” are ignored as
comments. Additional columns of data are ignored.

If the simulation temperature is specified, there must be a fourth column
of data, containing the system’s potential energy at that time point. It should
be a floating point value. See the section on replica exchange for more details.

3.2.3 Output

The output largely resembles that for wham, except with more columns.
The first line echoes the command line, followed by a specification of the
periodicity, and the number of windows. The iteration lines have the same
meaning. When the current value for the free energy curve is dumped, the
format looks like

-172.500000 -172.500000 1.968750 15.394489
-172.500000 -157.500000 2.574512 5.522757
-172.500000 -142.500000 3.147538 2.094142
-172.500000 -127.500000 3.505869 1.141952

where the first two columns are the values of the first and second dimensions
of the reaction coordinate, the third column is the free energy, and the last
column is the unnormalized probability.

Once the calculation has converged, wham will produce output resembling

Dumping simulation biases, in the metadata file order
Window F (free energy units)

#0 -0.000004

#1 -0.156869

13

#2 -0.534845
#3 -2.445469

These are the final F values from the wham calculation, and can be used
for computing weighted averages for properties other than the free energy.

If you specified a nonzero number of Monte Carlo bootstrap error analysis
trials, you will see lines that resemble

#MC trial 0: 990 iterations
#MC trial 1: 973 iterations
#MC trial 2: 970 iterations
#MC trial 3: 981 iterations
#MC trial 4: 984 iterations

at the end of the file.
The free energy data file is written when the calculation converges, and
resembles:

-232.500000 -232.500000 4.812986 0.003185 0.000001
-232.500000 -217.500000 4.830312 0.003741 0.000001
-232.500000 -202.500000 4.898622 0.001009 0.000000

The first two columns are the locations along the first and second dimen-
sions of the reaction coordinate. The third is the free energy, while the fourth
is the statistical uncertainty in the free energy. The fifth and sixth columns
are the normalized probability and its statistical uncertainty. The two un-
certainty columns will be zero if you did not use Monte Carlo bootstrapping.

4 Discussion

4.1 Terminology: PMF vs. Free Energy Curve

The output of a WHAM calculation is usually referred to as a PMF, short
for potential of mean force. Strictly speaking, this is not correct, since the
potential of mean force is defined as

PMF(z) = —kgTInp(z) (3)

where p is the probability density. By contrast, the free energy curve is

14

0.000000
0.000000
0.000000

F(z) = —ksTIn p(z) (4)

where p is the probability. The distinction between the two is the inclusion
in the latter of the Jacobian of x, which can be thought of as the volume
associated with different values of x as a result of projection.

To make this more concrete, consider a pair of ideal gas particles. There
are no forces between the particles, so all possible relative positionings of the
particles are equally likely, giving a probability density (and thus a PMF)
that is constant with distance. Alternatively, if one considers the derivation
of the PMF', where one integrates the ensemble-averaged force, it is trivial
to establish that the PMF is constant because the force is 0 everywhere.

By contrast, the free energy is NOT constant as a function of distance,
because increasing the distance is entropically favorable. This can be visual-
ized by centering the coordinate system on one particle and using spherical
coordinates. The volume accessible at a distance r is 47r2dr, so equal density
everywhere implies that probability increases with distance, and as a result
the free energy will drop with increasing distance.

Umbrella sampling relies on probability distributions along the chosen
coordinate, so it produces free energy curves, not PMFs. As far as I can tell,
this is true of all enhanced sampling methods with the exception of adaptive
force biasing (and free energy perturbation, but this is almost never used for
anything other than alchemy, where the Jacobian is 1).

If you truly want a PMF and know the Jacobian for your chosen coordi-
nate, you can simply add kg7 In J(X) to the free energy curve output from
wham.

In case you're wondering why I don’t offer this as a feature of wham, the
problem is my code is by design agnostic to your choice of reaction coordinate.
It neither knows nor cares whether it’s operating on a distance, angle, torsion,
or some other complicated function of coordinates. As a result, there’s no
easy way to know which Jacobian to apply.

4.2 Periodicity

Use of periodic boundary conditions only changes one thing in the code: when
calculating the biasing potential from a simulation window for a specific bin
in the histogram (the w;(X;) values in Equation 8 of Roux’s paper, cited
above), the minimum image convention is applied. Thus, for a window with

15

the biasing potential centered at 175 degrees, the “distance” to the bin at
-175 is 10 degrees, not 350 degrees.

The numpad argument on the command line is useful primarily for pe-
riodic reaction coordinates. It specifies a number of additional windows to
be prepended and appended to the final output, such that the periodicity is
explicitly visible in the free energy. So, if a calculation was done using 360
degree periodicity, 36 windows, with the reaction coordinate ranging -180
to 180, and numpad=>5, a total of 46 values would be output, from -225 to
+225. The numpad value has no effect at all on the values computed for the
free energy and probability.

4.3 Monte Carlo Bootstrap Error Analysis

The premise of bootstrapping error analysis is fairly straightforward. For a
time series containing N points, choose a set of N points at random, allowing
duplication. Compute the average from this “fake” data set. Repeat this
procedure a number of times and compute the standard deviation of the
average of the “fake” data sets. This standard deviation is an estimate for
the statistical uncertainty of the average computed using the real data. What
this technique really measures is the heterogeneity of the data set, relative
to the number of points present. For a large enough number of points, the
average value computed using the faked data will be very close to the value
with the real data, with the result that the standard deviation will be low. If
you have relatively few points, the deviation will be high. The technique is
quite robust, easy to implement, and correctly accounts for time correlations
in the data. Numerical Recipes has a good discussion of the basic logic of
this technique. For a more detailed discussion, see “An introduction to the
bootstrap”, by Efron and Tibshirani (Chapman and Hall/CRC, 1994). Please
note: bootstrapping can only characterize the data you have. If your data is
missing contributions from important regions of phase space, bootstrapping
will not help you figure this out.

In principle, the standard bootstrap technique could be applied directly
to WHAM calculations. One could generate a fake data set for each time
series, perform WHAM iterations, and repeat the calculation many times.
However, this would be inefficient, since it would either involve a) generating
many time series in the file system, or b) storing the time series in memory.
Neither of these strategies is particularly satisfying, the former because it
involves generating a large number of files and the latter because it would

16

consume very large amounts of memory. My implementation of WHAM is
very memory efficient because not only does it not store the time series, it
doesn’t even store the whole histogram of that time series, but rather just
the nonzero portion.

However, there is a more efficient alternative. The principle behind boot-
strapping is that you're trying to establish the various of averages calculated
with N points sampling the true distribution function, using your current N
points of data as an estimate of the true distribution. The histogram of each
time series is precisely that, an estimate of the probability distribution. So,
all we have to do is pick random numbers from the distribution defined by
that histogram. Once again, Numerical Recipes shows us how to do it: we
compute the normalized cumulant function, ¢(z), generate a random number
between 0 and 1 R, and solve ¢(z) = R for x. Thus, a single Monte Carlo
trial is computed in the following manner:

1. For each simulation window, use the computed cumulant of the his-
togram to generate a new histogram, with the same number of points.

2. Perform WHAM iterations on the set of generated histograms

3. Store the average normalized probability and free energy, and their
squares for each bin in the histogram

There’s a subtlety to how you compute fluctuations in the free energy
estimates, since the potential of mean force is only defined up to a con-
stant. I have chosen to align the free energy curves by computing them
from the normalized probabilities, which is effectively the same as setting
the Boltzmann-averaged free energies equal. This is a somewhat arbitrary
choice (for example, one could also set the unweighted averages equal), but
it seems reasonable. If you want something bulletproof, use the probabilities
and their associated fluctuations, which don’t have this problem. A better
solution, which I haven’t implemented yet, is to use the derivative-based ap-
proach from Smith, et al (J. Chem. Theor. Comput., 2018, 14, 6598-6612).
I haven’t implemented this yet, but if you're generating multiple free energy
curves anyway (perhaps because you’'ve done multiple replicates), that ap-
proach is better, and code is available from https://github.com/lgsmith/
derivative-stats.

The situation is slightly more complicated when one attempts to apply
the bootstrap procedure in two dimensions, because the cumulant is not

17

https://github.com/lgsmith/derivative-stats
https://github.com/lgsmith/derivative-stats

uniquely defined. My approach is to flatten the two dimensional histogram
into a 1 dimensional distribution, and take the cumulant of that. The rest of
the procedure is the same as in the 1-D case. In release 2.0.4, the option
to do 2D bootstrapping has been commented out. I’m not sure if
there’s a programming problem, or implementing the better way
of doing the 1D case simply revealed a deeper problem, but 2D
bootstrapping is currently broken.

There is one major caveat throughout all of this analysis: thus far, we
have assumed that the correlation time in time series is shorter than the
snapshot interval. To put it another way, we’ve assumed that all of the
data points are statistically independent. However, this is unlikely to be the
case in a typical molecular dynamics setting, which means that the sample
size used in the Monte Carlo bootstrapping procedure is too large, which
in turn causes the bootstrapping procedure to underestimate the statistical
uncertainty.

My code deals with this by allowing you to set the correlation time for
each time series used in the analysis, in effect reducing the number of points
used in generating the fake data sets (see section refss:format). For instance,
if a time series had 1000 points, and you determined by other means that the
correlation time was 10x the time interval for the time series, then you would
set “correl time” to 10, and each fake data set would have 100 points instead
of 1000. If the value is unset or is greater than the number of data points,
then the full number of data points is used. Please note that the actual time
values in the time series are not used in any way in this analysis; for purposes
of specifying the correlation time, the interval between consecutive points is
always considered to be 1.

The question of how to determine the correlation time is in some sense
beyond the scope of this document. In principle, one could simply compute
the autocorrelation function for each time series; if the autocorrelation is
well approximated by a single exponential, then 2x the decay time (the time
it takes the autocorrelation to drop to 1/e) would be a good choice. If
it’s multiexponential, then you’d use the longest time constant. However,
be careful: you really want to use the longest correlation time sampled in
the trajectory, and the fluctuations of the reaction coordinate may fluctuate
rapidly but still be coupled to slower modes.

It is important to note that the present version of the code uses the
correlation times only for the error analysis and not for the actual free energy
calculation. This isn’t like to be an issue, as the raw free energy curves aren’t

18

that sensitive to the correlation times unless they vary by factors of 10 or
more.

4.4 Using the code for replica exchange simulations

NOTE: Using wham for replica exchange is now deprecated — the numer-
ical accuracy of my approach is dubious at best, and there are superior op-
tions available. I suggest using an implementation of the Multistate Bennett
Acceptance Ratio (MBAR) method; one such implementation is pyMBAR,
available from https://github. com/ choderalab/pymbar. The discus-
sion below s preserved for historical purposes.

One major application for the ability to combine simulations run at dif-
ferent temperatures is the analysis of replica exchange simulations, and if the
email I've gotten over the last couple of years is any indication, it’s a pretty
common one. My code can be used for replica exchange, but I should start
by admitting that it wasn’t designed with it in mind, and may seem a bit
clumsy.

First, the metadata file format has changed as of the November, 2007
release of the code. If you want to specify temperatures in the metadata file,
you also have to specify the number of Monte Carlo points to use (if you're
not using bootstrapping, you can safely set this to any integer). See section
3.1.2 for details.

In order to use wham with time series collected at different temperatures,
the first thing to do is to follow the instructions given in section 3.1.2 regard-
ing the format of the metadata and time series files, while setting the spring
constants to 0. Indeed, for simple circumstances involving small systems this
may be enough for you to make a successful calculation.

However, for large systems this simple approach will almost certainly
get you nothing but a bunch of NaNs in your output. If this happens, the
most likely candidate is either a overflow or underflow in the probability
histograms. The reason is that the temperature-sensitive version of the code
increments the histogram by exp(—F/kgT) for each point (as opposed to
counting each point as 1). Since the potential energies for condensed-phase
molecular dynamics systems using standard force fields are typically of order
-50,000 kcal/mol, the means we’d be taking the exponential of a very large
number, which is a Bad Thing numerically.

However, in many circumstances one can work around this easily, by
shifting the location of zero energy. The simplest procedure is to locate this

19

https://github.com/choderalab/pymbar

lowest energy in any of the trajectories, and shift all of the energies in all of
the trajectories such that the lowest (most negative) value is now zero. This
will eliminate the overflows, since the largest contribution from an individual
data point will now be 1.

However, shifting the energies upward can lead to a different set of prob-
lems, where a given simulation appears to have no probability associated
with it, e.g. the sum of exp(—FE/kgT) for the trajectory underflows and is
effectively zero. This can occur if the energies in the simulation are signifi-
cantly higher than those in the lowest energy trajectories, which is expected
for condensed phase systems at high temperatures. Underflow in itself isn’t
a problem, but if that simulation is the only one which contributes to a bin
in the histogram (or more generally if all of the simulations which sample
a given bin have zero overall weight), the result will be a division by zero
causing the probability to be NaN or Inf.

Solving this problem is sometimes quite simple: reshift the energies by a
few kcal /mol, such that the lowest energy is moderately small instead of zero
(say -5 kcal/mol). If the problem is just numerical underflow, a small shift
may be sufficient to make the problem numerically well-behaved. However,
if the relevant portion of the histogram really is unaccessible except at high
temperature, then there may be no way to fix the problem, short of running
an additional umbrella-sampled trajectory.

20

	Introduction
	New in release 2.1.0
	New in release 2.0.11
	New in release 2.0.10.1
	New in release 2.0.10
	New in release 2.0.9
	New in release 2.0.8
	New in release 2.0.7
	New in release 2.0.6
	New in release 2.0.4 and 2.0.5

	Installation
	Command line arguments and file formats
	wham
	Command line arguments for WHAM
	File formats
	Output

	wham-2d
	Command line arguments
	File formats
	Output

	Discussion
	Terminology: PMF vs. Free Energy Curve
	Periodicity
	Monte Carlo Bootstrap Error Analysis
	Using the code for replica exchange simulations

