Presentation Skills Workshop

Dr. Alan Grossfield
alan_grossfield@urmc.rochester.edu
Twitter: @agrossfield
Learning objectives

- **How to give effective scientific presentations**
 - Focus on talks
 - Many lessons applicable to posters as well
 - Focus on slides

- **What you’ll learn**
 - Principles and rules of thumb
 - Specific techniques

- **There are no absolute rules!**
Principles

- Know your audience
- Make it easy for them
- Master your tools
Know your audience

- **It’s not what you say, it’s what they hear**
 - Goal is to communicate ideas

- **Think about the audience**
 - What do they know?
 - What will interest them?
 - What’s the story?

- **Detail vs. clarity**
 - Will precision increase or decrease understanding?
 - Telling less might teach them more
How much detail?

- Talks are mostly about broad strokes
- Is the method the message?
 - Put time where it’s most valuable
- Is the technique familiar to the audience?
 - How to explain it?
 - Rigor vs. clarity
 - THERE IS NO ONE RIGHT ANSWER
- Strategies
 - Extra slide with more details, skip unless questioned
What does the audience expect?

- **Anticipate questions**
 - Pose a question, then answer it
 - Prepare extra slides if need be
 - You’ll still get caught by surprise sometimes

- **How to present data**
 - Some figures are expected
 - Even if not optimal, people expect to see them
Principles

- Know your audience
- Make it easy for them
- Master your tools
Listening to talks is hard

- Understanding science requires focus
- Most people won’t give it to you unless you help
- What can you do?
 - Make slides simple and readable
 - Use consistent visual grammar
 - Tell the audience why you’re telling them
 - Give them chances to get un-lost
Guide audience expectations

- **Outlines set up where you’re going**
 - Repeat the outline periodically
 - Give viewer chance to get “un-lost”

- **Good slide titles let them know your intentions**

- **Don’t assume it’s obvious**
 - Help them look at the right thing
 - Show don’t tell
Simple and readable

- Large fonts
- Contrasting colors
 - Check on a projected screen
- Sparse text
 - Listening, not reading
 - You’re giving the talk, not your slides
Readable plots

- **Very different from papers**
- **Multi-panel figures usually bad**
 - Show one panel at a time, or remake
 - If you need to compare, do it in stages
 - Show Panel A, then B, then both
- **Axis labels and units must be readable**
- **Use color effectively**
Complex plots are hard

- **Complex figures are hard**
 - Hard to know what to look at with 5 curves
 - Especially true with unfamiliar plots

- **Make it easier by doing it piecewise**
 - Show 1 curve, discuss features
 - Add other curves after
 - Add only what you’re discussing
Bad plot

- Too many curves
 - What is focus?
- Lines are thin and hard to see
Better

- Lines thicker
- Added line at y=1
- Bigger fonts
Better still: multiple slides

- Audience unfamiliar with RDF
 - Use plot with 1 curve to explain features
Better still: multiple slides

- Use plot of 2 to make comparison
- Third plot to compare the other curves
Each slide has 1 message

- **Put on slide exactly what you need for that message**
 - Extra info is distracting
 - Warning signs
 - “You can ignore …”
 - “You don’t need to read …”

- **Slides are free**
 - Talks are different from papers

- **Builds / Animations vs. Multiple slides**
 - Builds can be useful if there’s lots of stuff on the slide
 - Also makes it harder to make and maintain the slides
Multipanel plots are evil

- Make things too small to see
- Excuse: “I don’t have time for more slides”
 - 5 simpler slides can be faster than 1 complex one
Cardiac hypertrophy is reduced in A57G vs Δ43 offspring

3) Data are mean ± SD with *P<0.05 depicting significance between Tg-A57G (n=9 animals) / Tg-Δ43 (n=9 animals) / Tg-A57G X Tg-Δ43 (n=6 animals) vs Tg-WT (n=9 animals) and # between mutants, by one-way ANOVA with Tukey’s multiple comparisons test. Open symbols-F; closed symbols, M.

Slide donor wishes to remain anonymous
Cardiac hypertrophy is reduced in A57G vs Δ43 offspring

How to improve?
- Show 1 panel at a time?
- Build up to show more?
- Make labels much bigger
- Slides are free!

Slide donor wishes to remain anonymous
Poison Primer Extension of SUP4oc TS Variants
2016-10-17

Problems
- Too much data
- Tiny text
- What can we do?

200 ng bulk RNA incubated with ~0.5 pMol P7 (62-43) at 95°C for 3 minutes and then slow cooled to 50°C. Primer extended in the presence of ddCTP with Promega AMV for 1 hr at 50°C 15% PA 7 M urea gel, Exposed 16 hours

Courtesy of Dr. Matt Payea
Poison Primer Extension of SUP4oc TS Variants
2016-10-17

200 ng bulk RNA incubated with ~0.5 pMol P7 (62-43) at 95C for 3 minutes and then slow cooled to 50C.
Primer extended in the presence of ddCTP with Promega AMV for 1 hr at 50C
15% PA 7 M urea gel, Exposed 16 hours

<table>
<thead>
<tr>
<th></th>
<th>SUP4oc</th>
<th>SUP4oc A28U</th>
<th>SUP4oc U4G</th>
<th>SUP4oc A38C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp:</td>
<td>28</td>
<td>37</td>
<td>28</td>
<td>37</td>
</tr>
<tr>
<td>MET22</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>% RT</td>
<td>0.0</td>
<td>0.2</td>
<td>6.2</td>
<td>8.4</td>
</tr>
<tr>
<td></td>
<td>6.2</td>
<td>8.2</td>
<td>2.2</td>
<td>7.1</td>
</tr>
<tr>
<td></td>
<td>7.0</td>
<td>0.4</td>
<td>1.8</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>1.8</td>
<td>2.0</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
<td>3.3</td>
<td>6.2</td>
<td>8.2</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>5.8</td>
<td>6.2</td>
<td>8.2</td>
</tr>
</tbody>
</table>

Courtesy of Matt Payea
Whatever this slide is actually about

<table>
<thead>
<tr>
<th>Temp:</th>
<th>28</th>
<th>37</th>
<th>28</th>
<th>37</th>
<th>28</th>
<th>37</th>
<th>28</th>
<th>37</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUP4oc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUP4oc A28U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUP4oc U4G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUP4oc A38C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% RT</th>
<th>MET22</th>
<th>+</th>
<th>Δ</th>
<th>+</th>
<th>Δ</th>
<th>+</th>
<th>Δ</th>
<th>+</th>
<th>Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0</td>
<td>6.2</td>
<td>8.4</td>
<td>6.2</td>
<td>7.1</td>
<td>2.2</td>
<td>7.0</td>
<td>0.4</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>6.2</td>
<td>7.1</td>
<td>2.2</td>
<td>7.0</td>
<td>0.4</td>
<td>1.8</td>
<td>4.2</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td>6.2</td>
<td>7.1</td>
<td>2.2</td>
<td>7.0</td>
<td>0.4</td>
<td>1.8</td>
<td>4.2</td>
<td>7.8</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>5.8</td>
<td>4.2</td>
<td>7.8</td>
<td>0.3</td>
<td>1.4</td>
<td>4.2</td>
<td>7.8</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>8.2</td>
<td>3.3</td>
<td>5.8</td>
<td>4.2</td>
<td>7.8</td>
<td>0.3</td>
<td>1.4</td>
<td>4.2</td>
<td>7.8</td>
</tr>
</tbody>
</table>

[Image of gel electrophoresis with bands labeled SUP4oc and WT tRNA_{Tyr}]

Courtesy of Matt Payea
PyLOOS Solution

- Read command line
- Create system
- Select “domains”
- Loop over trajectory
 - Compute distance
 - Compute angle
 - Compute torsion

```python
#!/usr/bin/env python3

import sys
import loos
import loos.pyloos
import math

header = "\n".join(sys.argv)
print("# " + header)

sys.argv = sys.argv[1:]

# create the system and trajectory
system = loos.createSystem(system_file)
traj = loos.pyloos.Trajectory(traj_file, system)

# apply selections to get atoms
for frame in traj:
    sel1 = loos.selectAtoms(system, sel_string1)
    sel2 = loos.selectAtoms(system, sel_string2)
    # apply selections to get atoms
    centroid1 = sel1.centroid()
    centroid2 = sel2.centroid()
    vectors1 = sel1.principalAxes()
    vectors2 = sel2.principalAxes()
    # compute the torsion between principal axes
    tors = loos.torsion(p1, centroid1, centroid2, p2)
    # write output
    print("\n", header)
    print(traj.index(), distance, angle, tors)
```

compute distance
centroids = [sel.centroid() for sel in traj]
distance = diff.length()

compute angle between principal axes
for sel1, sel2 in traj:
 centroid1 = sel1.centroid()
 centroid2 = sel2.centroid()
 vectors1 = sel1.principalAxes()
 vectors2 = sel2.principalAxes()
 # compute the angle between principal axes
 angle = math.acos(axis1 * axis2) * 180 / math.pi
 # compute torsion between principal axes
 p1 = centroid1 + axis1
 p2 = centroid2 + axis2
 tors = loos.torsion(p1, centroid1, centroid2, p2)
 # write output
 print(header)
 print(traj.index(), distance, angle, tors)
Consistent visual grammar is important

- **Use unconscious expectations to help people**

- **How?**
 - Consistent nomenclature
 - Consistent colors and symbols
 - Simple slide formats
 - Position items consistently
Using color to convey data

- **Rule 1: Must be visible**
- **Rule 2: Must contrast with each other**
 - Avoid red/green for color-blind audience members
- **Rule 3: Check on the worst projector you can find**
 - Reds are always dimmer on projector vs. computer
- **Rule 4: Program defaults usually lousy**
Picking effective colors

- **Use a color wheel**
 - Colors evenly spaced around the wheel will contrast nicely

- **Tools to help you**
 - http://projects.susielu.com/viz-palette
Color maps

- **Use maps that capture variation evenly**
 - Most color scales distort differences
 - “parula” is good (default on matlab)

- **Make sure the colors emphasize what you want people to see**
 - Different color maps for all positive vs. positive and negative values
This is a map of probability differences

- Which changes are positive?
This is a map of probability differences

- Which changes are positive?
This is a map of probability differences

- **Which changes are positive?**
 - Neutral color at zero, different colors for positive and negative
 - Could also put black in the middle, for dark background slides
How to organize a talk?

- **Chronologically**
 - Elements of a mystery can excite the audience
 - Reality often not that clear
 - Side paths can confuse the story
 - What about parallel paths?

- **Logically**
 - “Rewrite history” so the strategy makes sense

- **Don’t report everything you did**
 - More true the further you go in science

- **No one right answer**
 - Don’t get wedded to one approach
Principles

- Know your audience
- Make it easy for them
- Master your tools
Making good slides can be time-consuming

- Invest in your skills
- Use the best tools
- Learn to automate
Which tools?

- **Plotting**
 - Hard to make good plots in Excel
 - Defaults are usually terrible
 - gnuplot is my favorite
 - matplotlib and seaborn are good if you speak python
 - ggplot for R folks

- **Vector graphics**
 - Composing images / Drawing
 - Illustrator is industry standard
 - inkscape is good free alternative

- **Specialty tools**
 - Molecular graphics like pymol and VMD
Which tools?

- **Presentation software**
 - Keynote
 - PowerPoint
 - Both are very powerful, so pick one and master it
How to choose?

- Cost and platform
- Capability
- Operating system
- Can you automate common tasks?
 - Easier to be consistent if you can automatically regenerate plots
Take time to learn what the tools can do

- Take time to play
- Look for a “better way”
 - Will take longer the first few times
 - Payoff is down the road
- Use online tutorials
Opportunities for Automation

- Templates in presentation software
- Scriptable plotting software
- Make notes of your tricks
 - My lab uses a wiki
- Good for reproducibility too
 - Data analysis (manual is BAD)
 - Make processes self-documenting
Practical rules of thumb

- Use less text
- Bullets rather than sentences
 - Big fonts
- Use color consistently
- Slides are cheap
 - 1 idea per slide
 - Build complex plots sequentially
- Every slide needs a title
- Avoid visual distraction
 - Simple templates
 - No gratuitous animations
Warning signs

- A slide takes forever to explain
- “I know you can’t read this, but…”
- “You only need to look at this part…”
- Multi-panel figures
Humor

- Double-edged sword
- Know yourself
- Don’t build it into your slides
Practice and Testing

- **Practice your talks**
 - Rehearse transitions
 - Short talks are harder
 - Not just in front of your lab

- **Test on projectors**
 - Contrast is lower on big screen

- **Refine with feedback**
 - Make changes after giving the talk
Talks and papers are different

- **Design figures accordingly**
- **Papers**
 - Space is precious
 - Time is cheap
 - Multipanel figures good
 - Complex figures ok
- **Talks**
 - Space is cheap
 - Time is precious
 - Multipanel figures evil
 - Complex figures evil
Conclusions

- Primary goal is for audience to understand and appreciate your work
- Find your style
- If the audience only remembers one sentence…
Feedback

- What was good about the workshop?
- What didn’t work?
- Email me
 - alan_grossfield@urmc.rochester.edu
- PDF of this talk