Department of Biochemistry and Biophysics, University of Rochester Medical School

Presentation Skills Workshop

Dr. Alan Grossfield alan_grossfield@urmc.rochester.edu Twitter: @agrossfield

Learning objectives

Dr. Alan Grossfield

How to give effective scientific presentations

- Focus on talks
- Many lessons applicable to posters as well
- Focus on slides

What you'll learn

- Principles and rules of thumb
- Specific techniques
- There are no absolute rules!

Dr. Alan Grossfield

Principles

- Know your audience
- Make it easy for them
- Master your tools

Know your audience

It's not what you say, it's what they hear

• Goal is to communicate ideas

Think about the audience

- What do they know?
- What will interest them?
- What's the story?
- Detail vs. clarity
 - Will precision increase or decrease understanding?
 - Telling less might teach them more

How much detail?

- Talks are mostly about broad strokes
- Is the method the message?
- Put time where it's most valuable
- Is the technique familiar to the audience?
 - How to explain it?
- Rigor vs. clarity
- THERE IS NO ONE RIGHT ANSWER
- Strategies
 - Extra slide with more details, skip unless questioned

What does the audience expect?

Anticipate questions

Dr. Alan Grossfield

- Pose a question, then answer it
- Prepare extra slides if need be
- You'll still get caught by surprise sometimes

How to present data

- Some figures are expected
- Even if not optimal, people expect to see them

Dr. Alan Grossfield

Principles

- Know your audience
- Make it easy for them
- Master your tools

Listening to talks is hard

- Understanding science requires focus
- Most people won't give it to you unless you help
- What can you do?
 - Make slides simple and readable
 - Use consistent visual grammar
 - Tell the audience why you're telling them
 - Give them chances to get un-lost

Guide audience expectations

Dr. Alan Grossfield

Outlines set up where you're going

- Repeat the outline periodically
- Give viewer chance to get "un-lost"
- Good slide titles let them know your intentions
- Don't assume it's obvious
- Help them look at the right thing
- Show don't tell

Simple and readable

Large fonts

Contrasting colors

• Check on a projected screen

Sparse text

- Listening, not reading
- You're giving the talk, not your slides

Readable plots

- Very different from papers
- Multi-panel figures usually bad
- Show one panel at a time, or remake
- If you need to compare, do it in stages
- Show Panel A, then B, then both
- Axis labels and units must be readable
- Use color effectively

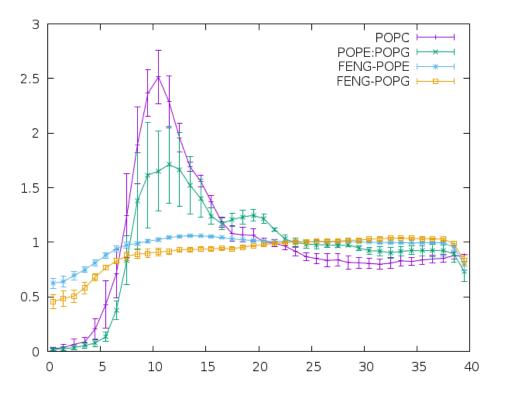
Complex plots are hard

Dr. Alan Grossfield

Complex figures are hard

- Hard to know what to look at with 5 curves
- Especially true with unfamiliar plots

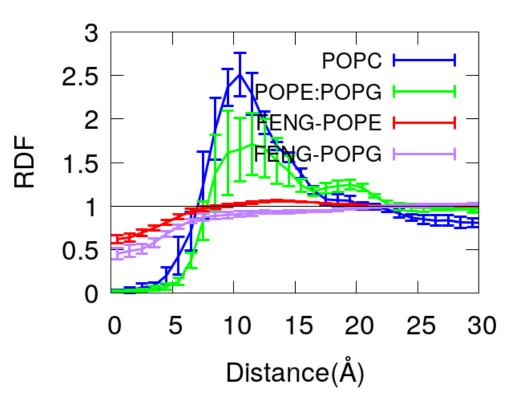
Make it easier by doing it piecewise


- Show 1 curve, discuss features
- Add other curves after
- Add only what you're discussing

Dr. Alan Grossfield

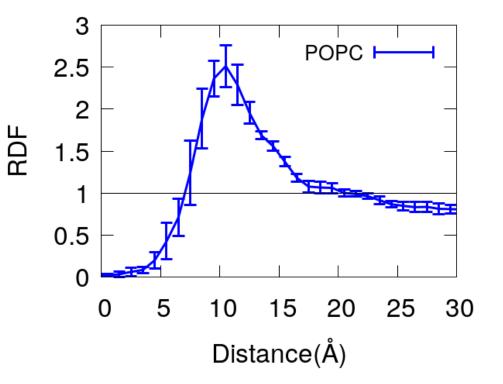
Bad plot

- Too many curves
- What is focus?
- Lines are thin and hard to see

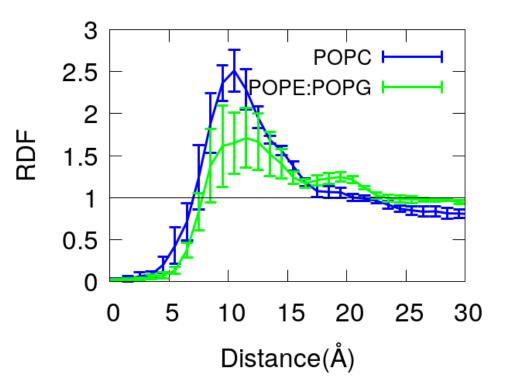


Dr. Alan Grossfield

Better


- Lines thicker
- Added line at y=1
- Bigger fonts

Better still: multiple slides


- Audience unfamiliar with RDF
- Use plot with 1 curve to explain features

Better still: multiple slides

- Use plot of 2 to make comparison
- Third plot to compare the other curves

Each slide has 1 message

Put on slide exactly what you need for that message

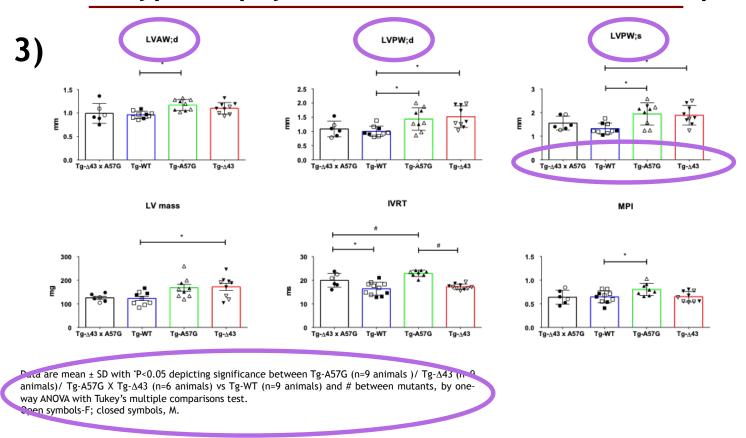
- Extra info is distracting
- Warning signs

Dr. Alan Grossfield

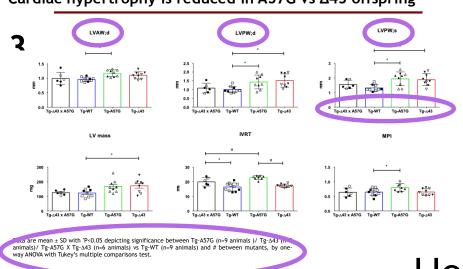
- "You can ignore"
- "You don't need to read ..."

Slides are free

• Talks are different from papers


Builds / Animations vs. Multiple slides

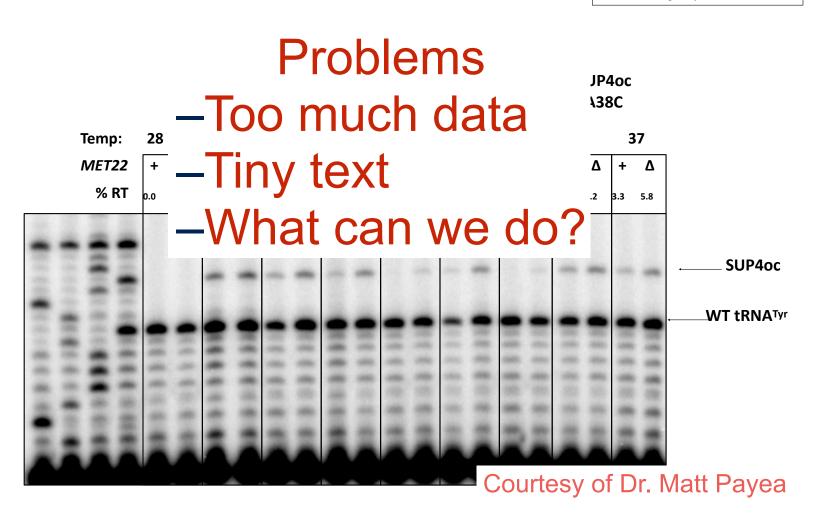
- Builds can be useful if there's lots of stuff on the slide
- Also makes it harder to make and maintain the slides


Multipanel plots are evil

- Make things too small to see
- Excuse: "I don't have time for more slides"
- 5 simpler slides can be faster than 1 complex one

Cardiac hypertrophy is reduced in A57G vs Δ 43 offspring

Slide donor wishes to remain anonymous


Cardiac hypertrophy is reduced in A57G vs Δ43 offspring

How to improve?

- Show 1 panel at a time?
- Build up to show more?
- Make labels much bigger
- Slides are free!

Slide donor wishes to remain anonymous

200 ng bulk RNA incubated with ~0.5 pMol P7 (62-43) at 95C for 3 minutes and then slow cooled to 50C. Primer extended in the presence of ddCTP with Promega AMV for 1 hr at 50C 15% PA 7 M urea gel, Exposed 16 hours

Poison Primer Extension of SUP4oc TS Variants 2016-10-17

200 ng bulk RNA incubated with ~0.5 pMol P7 (62-43) at 95C for 3 minutes and then slow cooled to 50C. Primer extended in the presence of ddCTP with Promega AMV for 1 hr at 50C 15% PA 7 M urea gel, Exposed 16 hours

SUP4oc SUP4oc SUP4oc SUP4oc A28U U4G A38C Temp: 37 37 37 28 37 28 37 28 28 28 **MET22** Δ + Δ Δ Δ Δ + Δ Δ + Δ Δ + + + + + + % RT 0.0 0.2 6.2 8.2 6.2 8.4 6.2 7.1 2.2 7.0 0.4 1.8 4.2 7.8 0.3 1.4 3.3 5.8 SUP4oc WT tRNA^{Tyr} Courtesy of Matt Payea

Poison Primer Extension of SUP4oc TS Variants 2016-10-17

				SUP4oc								SUP4oc U4G				SUP4oc A38C			
Temp:		28	37	28		37		28		37		28		37		28		37	
MET22		+	Δ	+	Δ	+	Δ	+	Δ	+	Δ	+	Δ	+	Δ	+	Δ	+	Δ
	% RT	0.0	0.2	6.2	8.4	6.2	7.1	2.2	7.0	0.4	1.8	4.2	7.8	0.3	1.4	6.2	8.2	3.3	5.8
	10.000			-	-	-	-		-				-			-	-		

Whatever this slide is actually about

SUP4oc

WT tRNA^{Tyr}

Courtesy of Matt Payea

PyLOOS Solution

Dr. Alan Grossfield

- Read command line
- Create system
- Select "domains"
- Loop over trajectory
 - Compute distance
 - Compute angle
 - Compute torsion

#!/usr/bin/env python3

import sys
import loos
import loos.pyloos
import math

header = " ".join(sys.argv)
print("# ", header)

```
# create the system and trajectory
system = loost-stingatesystem(system_file)
traj = loos.pyloos_system_jecttoryy(traj_file, system)
# apply selectionsyloor getry(atoms system)
sel1 = loos.selvectAtoms(system, sel_string1)
sel2 = loos.selectAtoms(/system; se_strings) = string2)
for frame in trait:
       # compute destruction distance
       centroid1 = centroid1^2 centroid()
       centroid2 =disel 2enteent rended)
       # compute angle between principal, axesxes
dectors cepevile sincipations ()
        akistancectodsiff. tength()
                       vectors2 = sel2.principalAxes()
       vectors2 = se@2i@rimcfpalAkes()
angle_math.acos(axis1 * axis2) * 180/math.pi
axis2 = vectors2[0]
       angle = math.accos(axis1s1sim axis2)pr*nc1000/math.pi
# compute tors20# @etmeten+peris1cipal axes
       pl = centroidl^{p_4} = a x^{15} T^{102} + a x^{152}
       p2 = centroid2torsaxiso2.torsion(p1, centroid1, centroid2, p2)
       tors = loos.tofs()((p1, index), p2)
```

Consistent visual grammar is important

- Use unconscious expectations to help people
- How?
- Consistent nomenclature
- Consistent colors and symbols
- Simple slide formats
- Position items consistently

Using color to convey data

Dr. Alan Grossfield

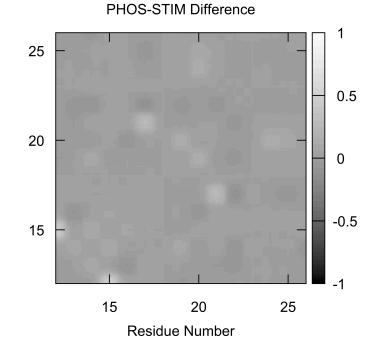
- Rule 1: Must be visible
- Rule 2: Must contrast with each other
- Avoid red/green for color-blind audience members
- Rule 3: Check on the worst projector you can find
- Reds are always dimmer on projector vs. computer
- Rule 4: Program defaults usually lousy

Picking effective colors

Use a color wheel

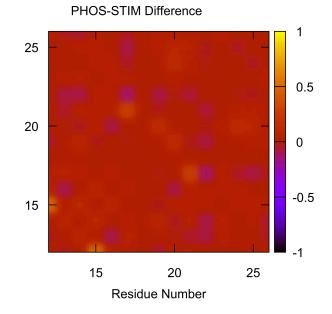
- Colors evenly spaced around the wheel will contrast nicely
- Tools to help you
 - http://projects.susielu.com/viz-palette

Color maps


• Use maps that capture variation evenly

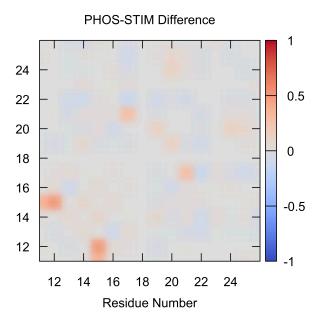
- Most color scales distort differences
- "parula" is good (default on matlab)
- Make sure the colors emphasize what you want people to see
 - Different color maps for all positive vs. positive and negative values

This is a map of probability differences


Which changes are positive?

This is a map of probability differences

Which changes are positive?



This is a map of probability differences

Which changes are positive?

- Neutral color at zero, different colors for positive and negative
- Could also put black in the middle, for dark background slides

How to organize a talk?

Dr. Alan Grossfield

Chronologically

- Elements of a mystery can excite the audience
- Reality often not that clear
- Side paths can confuse the story
- What about parallel paths?

Logically

• "Rewrite history" so the strategy makes sense

Don't report everything you did

- More true the further you go in science
- No one right answer
 - Don't get wedded to one approach

Principles

- Know your audience
- Make it easy for them
- Master your tools

Making good slides can be time-consuming

- Invest in your skills
- Use the best tools
- Learn to automate

Which tools?

Plotting

- Hard to make good plots in Excel
- Defaults are usually terrible
- gnuplot is my favorite
- matplotlib and seaborn are good if you speak python
- ggplot for R folks

Vector graphics

- Composing images / Drawing
- Illustrator is industry standard
- inkscape is good free alternative
- Specialty tools
- Molecular graphics like pymol and VMD

Which tools?

Presentation software

- Keynote
- PowerPoint
- Both are very powerful, so pick one and master it

How to choose?

- Cost and platform
- Capability
- Operating system
- Can you automate common tasks?
- Easier to be consistent if you can automatically regenerate plots

Take time to learn what the tools can do

Take time to play

- Look for a "better way"
 - Will take longer the first few times
 - Payoff is down the road
- Use online tutorials

Opportunities for Automation

Dr. Alan Grossfield

- Templates in presentation software
- Scriptable plotting software
- Make notes of your tricks
- My lab uses a wiki
- Good for reproducibility too
- Data analysis (manual is BAD)
- Make processes self-documenting

Practical rules of thumb

- Use less text
- Bullets rather than sentences
- Big fonts

Dr. Alan Grossfield

- Use color consistently
- Slides are cheap
- 1 idea per slide
- Build complex plots sequentially
- Every slide needs a title
- Avoid visual distraction
- Simple templates
- No gratuitous animations

Warning signs

- A slide takes forever to explain
- "I know you can't read this, but..."
- "You only need to look at this part..."
- Multi-panel figures

Dr. Alan Grossfield

Humor

- Double-edged sword
- Know yourself
- Don't build it into your slides

Practice and Testing

Practice your talks

- Rehearse transitions
- Short talks are harder
- Not just in front of your lab

Test on projectors

- Contrast is lower on big screen
- Refine with feedback
 - Make changes after giving the talk

Dr. Alan Grossfield

Talks and papers are different

- Design figures accordingly
- Papers
 - Space is precious
 - Time is cheap
 - Multipanel figures good
 - Complex figures ok
- Talks
 - Space is cheap
 - Time is precious
 - Multipanel figures evil
 - Complex figures evil

Conclusions

- Primary goal is for audience to understand and appreciate your work
- Find your style
- If the audience only remembers one sentence...

Dr. Alan Grossfield

Feedback

- What was good about the workshop?
- What didn't work?
- Email me
 - alan_grossfield@urmc.rochester.edu
- PDF of this talk
- https://bit.ly/39EFyhL

