Department of Biochemistry and Biophysics

Presentation Skills Workshop

Dr. Alan Grossfield

University of Rochester Medical School

Learning objectives

- How to give effective scientific presentations
 - Focus on talks
 - Many lessons applicable to posters as well
 - Focus on slides
- What you'll learn
 - Principles and rules of thumb
 - Specific techniques

Principles

- Know your audience
- Make it easy for them
- Master your tools

Know your audience

It's not what you say, it's what they hear

- Goal is to communicate ideas

Think about the audience

- What do they know?
- What will interest them?
- What's the story?

Detail vs. clarity

- Will precision increase or decrease understanding?
- Telling less might teach them more

How much detail?

- Talks are mostly about broad strokes
- Is the method the message?
 - Put time where it's most valuable
- Is the technique familiar to the audience?
 - How to explain it?
 - Rigor vs. clarity
 - THERE IS NO ONE RIGHT ANSWER

Strategies

- Extra slide with more details, skip unless questioned
- Detail in speaker notes

What does the audience expect?

Anticipate questions

- Pose a question, then answer it
- Prepare extra slides if need be
- You'll still get caught by surprise sometimes

How to present data

- Some figures are expected
 - Even if not optimal, people expect to see them

Principles

- Know your audience
- Make it easy for them
- Master your tools

Listening to talks is hard

- Understanding science requires focus
- Most people won't give it to you unless you help
- What can you do?
 - Make slides simple and readable
 - Use consistent visual grammar
 - Tell the audience why you're telling them
 - Give them chances to get un-lost

Guide audience expectations

- Outlines set up where you're going
 - Repeat the outline periodically
 - Give viewer chance to get "un-lost"
- Good slide titles let them know your intentions

Don't assume it's obvious

- Help them look at the right thing
- Show don't tell

Simple and readable

Large fonts

Contrasting colors

- Check on a projected screen

Sparse text

- Listening, not reading
- You're giving the talk, not your slides

Readable plots

- Very different from papers
- Multi-panel figures usually bad
 - Show one panel at a time, or remake
 - If you need to compare, do it in stages
 - Show Panel A, then B, then both
- Axis labels and units must be readable
- Use color effectively

Complex plots are hard

Complex figures are hard

- Hard to know what to look at with 5 curves
- Especially true with unfamiliar plots

Make it easier by doing it piecewise

- Show 1 curve, discuss features
- Add other curves after
- Add only what you're discussing

- Too many curves
 - What is focus?
- Lines are thin and hard to see

- Lines thicker
- Added line at y=1
- Bigger fonts

Better still: multiple slides

- Audience unfamiliar with RDF
 - Use plot with 1 curve to explain features

Better still: multiple slides

- Use plot of 2 to make comparison
- Third plot to compare the other curves

Each slide has 1 message

- Put on slide exactly what you need for that message
 - Extra info is distracting
 - Warning signs
 - "You can ignore"
 - "You don't need to read ..."
- Slides are free
 - Talks are different from papers
- Builds / Animations vs. Multiple slides
 - Builds can be useful if there's lots of stuff on the slide
 - Also makes it harder to make and maintain the slides

Multipanel plots are evil

- Make things too small to see
- Excuse: "I don't have time for more slides"
 - 5 simpler slides can be faster than 1 complex one

Lipid binding causes concerted structural changes

Is Retinal Orientation Altered by Protein-Lipid Interactions?

Poison Primer Extension of SUP4oc TS Variants 2016-10-17

200 ng bulk RNA incubated with ~0.5 pMol P7 (62-43) at 95C for 3 minutes and then slow cooled to 50C. Primer extended in the presence of ddCTP with Promega AMV for 1 hr at 50C 15% PA 7 M urea gel, Exposed 16 hours

Poison Primer Extension of SUP4oc TS Variants 2016-10-17

200 ng bulk RNA incubated with ~0.5 pMol P7 (62-43) at 95C for 3 minutes and then slow cooled to 50C. Primer extended in the presence of ddCTP with Promega AMV for 1 hr at 50C 15% PA 7 M urea gel, Exposed 16 hours

				SUP4oc						SUP4oc A28U				SUP4oc U4G				SUP A3			
	Temp:		28	37	37 28		8 37		7 2		28 37		28		37		28		37		
	M	IET22	+	Δ	+	Δ	+	Δ	+	Δ	+	Δ	+	Δ	+	Δ	+	Δ	+	Δ	
		% RT	0.0	0.2	6.2	8.4	6.2	7.1	2.2	7.0	0.4	1.8	4.2	7.8	0.3	1.4	6.2	8.2	3.3	5.8	
	2.	1.11																			
111	1000				-	-	-	-	-	-			-	-			-	-	-	-	← SUP4oc
	÷.	ie					-	•	-	-	-	-	-	-	-	-	•	•	-	-	←──WT tRNA ^{⊤yr}
110			111		111	111	199		111		111		-		-		1.00		1 1 1		
-	-		1.1			-	11	-	1		11	-	-	-	1 1	-	1 1	-	1 1	-	
																Со	ur	tes	sy (of I	Matt Payea

Whatever this slide is actually about

			SL	JP4oc		SUP4oc A28U					SUP4 U40			SUP4oc A38C				
Temp:	28	37	28		37		28		37		28		37		28		37	
MET22	+	Δ	+	Δ	+	Δ	+	Δ	+	Δ	+	Δ	+	Δ	+	Δ	+	Δ
% RT	0.0	0.2	6.2	8.4	6.2	7.1	2.2	7.0	0.4	1.8	4.2	7.8	0.3	1.4	6.2	8.2	B.3	5.8
				-	1	-	1.1	-		-		-			-	-		

Courtesy of Matt Payea

PyLOOS Solution

- Read command line
- Create system
- Select "domains"
- Loop over trajectory #
 - Compute distance
 - Compute angle
 - Compute torsion

```
#!/usr/bin/env python3
```

```
import sys
import loos
import loos.pyloos
import math
```

```
header = " ".join(sys.argv)
print("# ", header)
```

- trajectory # apply selected processing system = loos.createSystem(system_file) sell = loos #selvedtationsetery(and the sel stu
 - sel1 = loos.*selectAtoms(system, sel_string1)
 sel2 = loos.*selectAtoms(system, sel_string1)
 - for frame if traj:

```
# compute distance
# compute distance
centroid1 = centroid2.centroid()
centroid2 = disel 2entrept reside()
centroid2 = disel 2entrept reside()
```

```
# compute angle between principal axes decitors: e^{\beta t} e^{
```

vectors2 = sel2.principalAxes() vectors2 = sel2igrimetipalAxes() axis2 = vectors2[0] angle = math.acos(uxis1* axis2) * 180/math.pi angle = math.acos(uxis1sich axis2) pr*nc100/math.pi # compute torspip centroiden+principal axes p1 = centroid1^{p2} = axis² p2 = centroid2torsaxisos.torsion(p1, centroid1, centroid2, p2)

```
tors = loos.to \frac{\#}{prince}  (0, \frac{put}{prince}), \frac{pit}{prince}, \frac{pit}{prince}, \frac{p2}{prince}, \frac{p2}{prince},
```


Consistent visual grammar is important

- Use unconscious expectations to help people
- How?
 - Consistent nomenclature
 - Consistent colors and symbols
 - Simple slide formats
 - Position items consistently

Using color to convey data

- Rule 1: Must be visible
- Rule 2: Must contrast with each other
 - Avoid red/green for color-blind audience members
- Rule 3: Check on the worst projector you can find
 - Reds are always dimmer on projector vs. computer
- Rule 4: Program defaults usually lousy

Picking effective colors

Use a color wheel

- Colors evenly spaced around the wheel will contrast nicely

Tools to help you

- http://projects.susielu.com/viz-palette

Color maps

- Use maps that capture variation evenly
 - Most color scales distort differences
 - "parula" is good (default on matlab)
- Make sure the colors emphasize what you want people to see
 - Different color maps for all positive vs. positive and negative values

This is a map of probability differences

• Which changes are positive?

This is a map of probability differences

PHOS-STIM Difference

• Which changes are positive?

This is a map of probability differences

- Which changes are positive?
 - Neutral color at zero, different colors for positive and negative

How to organize a talk?

Chronologically

- Elements of a mystery can excite the audience
- Reality often not that clear
 - Side paths can confuse the story
- What about parallel paths?

Logically

- "Rewrite history" so the strategy makes sense

Don't report everything you did

– More true the further you go in science

No one right answer

- Don't get wedded to one approach

Principles

- Know your audience
- Make it easy for them
- Master your tools

Making good slides can be time-consuming

- Invest in your skills
- Use the best tools
- Learn to automate

Which tools?

Plotting

- Hard to make good plots in Excel
- Defaults are usually terrible
- gnuplot is my favorite
- matplotlib and seaborn are good if you speak python
- ggplot for R folks

Vector graphics

- Composing images / Drawing
- Illustrator is industry standard
- inkscape is good free alternative

Specialty tools

– Molecular graphics like ${\tt pymol}$ and ${\tt VMD}$

Which tools?

Presentation software

- Keynote
- PowerPoint
- Both are very powerful, so pick one and master it

How to choose?

- Cost and platform
- Capability
- Operating system
- Can you automate common tasks?
 - Easier to be consistent if you can automatically regenerate plots
 - gnuplot and matplotlib/seaborn are very scriptable

Take time to learn what the tools can do

- Take time to play
- Look for a "better way"
 - Will take longer the first few times
 - Payoff is down the road
- Use online tutorials
- Classes for some tools

Opportunities for Automation

- Templates in presentation software
- Scriptable plotting software
- Make notes of your tricks
 - My lab uses a wiki
- Good for reproducibility too
 - Data analysis (manual is BAD)
 - Make processes self-documenting

Practical rules of thumb

Less text is better

- Bullets rather than sentences
- Big fonts
- Use color consistently
- Slides are cheap
 - 1 idea per slide
 - Build complex plots sequentially
- Every slide needs a title
- Avoid visual distraction
 - Simple templates
 - No gratuitous animations

Warning signs

- A slide takes forever to explain
- "I know you can't read this, but..."
- "You only need to look at this part..."
- Multi-panel figures

These things should make you think twice

Humor

- Double-edged sword
- Know yourself
- Don't build it into your slides

Practice and Testing

Practice your talks

- Rehearse transitions
- Short talks are harder
- Not just in front of your lab

Test on projectors

- Contrast is lower on big screen

Refine with feedback

- Make changes after giving the talk

Talks and papers are different

- Design figures accordingly
- Papers
 - Space is precious
 - Time is cheap
 - Multipanel figures good
 - Complex figures ok

Talks

- Space is cheap
- Time is precious
- Multipanel figures evil
- Complex figures evil

Conclusions

- Primary goal is for audience to understand and appreciate your work
- Find your style
- If the audience only remembers one sentence...

Feedback

- What was good about the workshop?
- What didn't work?
- Tell me or email me
 - alan_grossfield@urmc.rochester.edu
 - I will send a survey link within a few days to get more feedback
- This talk
 - http://bit.ly/2YgsVGY

Poster workshop this winter!