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• Opsin more inactive 
   than Meta-II
• MI-MII more active 
   than Dark-opsin
• Still converging
   - 0 = active
   - 1 = inactive
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Unraveling Allostery with Simulations 
of Rhodopsin and Opsin

Simulation Details
• Forcefield: CHARMM27/36
   - Retinal parameters provided
     by S. Feller
• Timestep: 2 fs
• Ensemble: NPγT
   - γ = 30 dyn/cm
• Thermostat: Langevin
• Electrostatics: PME 
   - Cutoff: 10 Å
• NAMD 2.8 - BlueGene/Q 

• Size 74x74x90 Å
• 123 SDPE lipids
• ~7000 waters
• Neutralizing ions
   - Additional 100 mM NaCl
• System size: ~46000 atoms
• Low pH conditions
   - Glu113 & Glu134 protonated
   - Favors Meta II 

Work done in LOOS (Lightweight Object Oriented Structure 
analysis library), an open source C++ library designed and 
maintained by the Grossfield lab.  LOOS provides a concise, 
adaptable framework for designing analysis tools that 
interfaces with native formats of most simulation packages.

http://loos.sourceforge.net
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GPCR Background
• Most GPCRs: basal activity
   - Three classes of ligand:
       - Agonists: increase signaling 
       - Inverse agonists: lower signal
       - Antagonists: do not alter signal

• Rhodopsin: photoreceptor
   - Ligand: retinal
        - Agonist and inverse agonist

• Opsin: apo-rhodopsin
   - Outside photocycle
   - Low activity

• Integral membrane proteins
   - 7 transmembrane (TM) α-helices

• Molecular transducer 
   - Ligand enters extracellular side
   - Binds in hydrophobic core 
     (class A GPCRs)
   - G protein binds cytoplasmic face

• Ligand does not enter cell 
   - Allosteric activation process

• Only a handful of
   transitions seen
   - Confirmed by multiple metrics
   - Structural overlap observed
   - Best analyses let data speak
     for itself
   - Need enhanced sampling/bias

Allosteric Activation
• Ligand binding site & 
   active site are distant
• Induced fit
   - Ligand drives
     conformational change 
   - Active participation

• Conformational
   equilibrium 
   - Protein fluctuates
   - Ligand binds single    
     conformation
   - Passive participation

• Simulate states
   - Understand dynamics
   - Effect of ligand
   - Identify transitions

Induced Fit

Equilibrium
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G protein-coupled receptors (GPCRs) are biomedically important integral 
membrane proteins that allosterically transduce signal across the lipid bilayer; 
structural changes cascade through the protein to modulate activity in a 
mechanism that is not fully understood. Rhodopsin, the mammalian dim-light 
receptor, is a model GPCR that provides a unique test case for understanding 
allostery. The ligand-bound protein acts as a two-state switch with minimal 
basal activity. However, its apo-form (opsin) is outside the activation cycle and 
may behave differently. Structural data reveal an active-like opsin, but 
physiologically it has only minimal activity. We explore opsin’s ability to 
fluctuate between states and test the ligand’s role in activation. We performed 
an ensemble of microsecond-scale all-atom simulations (~100 µs in all) using 
four systems: two with ligand present and two without. Opsin's fluctuations 
suggest that both active-like and inactive-like structures may be part of its 
conformational ensemble. Opsin trajectories appear better able to sample both 
conformations, although all four ensembles are still statistically converging. 
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Lock
Residues • Salt bridge near G 

   protein binding site
   - Conserved residues
   - Implicated in activation
   - Two-state switch
        - Closed: inactive
        - Open: active

Clustering Reveals Structural 
Overlap

• Cluster on Cα position
   - K-means algorithm
   - First pass: K = 10 clusters
   - Use all 24 systems
        - Add 2 published simulations
        - Dark & Dark-MI simulations 

• Plot normalized probability 
   - Bars grouped by cluster
   - Color indicates initial state

• To what extent does the 
   ligand impact activation?
   - Changes whole protein dynamics
        - More data needed to quantify
          changes satisfactorily

• Identify contacts unique to state
   - Contacts from crystal structures
        - Active (1U19)
        - Inactive (3PXO)
   - Normalized number of:
        - Active contacts broken
        - Inactive contacts formed
   - Side-chain centroids  
     within 8Å 
• Contacts form network 
   across extracellular and 
   intracellular regions
   - Illustration shows activation
   - Left: broken contacts on 
     inactive structure
   - Right: formed contacts on 
     active structure

Contact-Based Coordinate
• Plot transition in simulations
• Each trajectory calculated
   independently
   - Averaged by initial state
   - Error bars: standard deviation

• Calculate collective motions 
   - Use all trajectories in aggregate
        - PC-space defines all simulations
   - Transmembrane Cα's only
• Plot PC1 vs. PC2 displacement
   - Individual trajectories plotted
        - Colored by ensemble
   - PC1 captures activation 
• PC1 illustration
   - Average structure: rainbow
   - Black vectors: PC1
   - Active structure in red
   - Inactive structure in blue

Principal Component Analysis

Poster PDF
tinyurl.com/rhod-sim
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Ligand and Binding Pocket Dynamics

An Experimentally Motivated Reaction Coordinate
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• Monitor ligand orientation
   - Measure cosine between 
     methyls and membrane normal
   - Difference in prefered orientation 

• Rotamer toggle switch
   - Aromatics near binding pocket
   - Implicated in activation
   - Highly conserved
• χ1 torsion determines state
   - Concerted rotameric transitions
   - Many transitions seen 
   

• Monitor distance 
   through simulations
   - Use N-O distance
   - Only 1-2 transitions seen

• Highly conserved residues
• Rotates into protein core 
• May stabilize active conformation 
   - Use RMSD from inactive structure
   - Many transitions seen

Ionic Lock

Ionic Lock

NPxxY  Motif

Dark Opsin

Meta I
Opsin

Meta II

• Combine measures
   - Used by Dror et al. (PNAS, 2011)
   - Track by simulation
   - NPxxY transitions not coupled 
     to Ionic Lock motion
• Crystal structures indicated
   by black stars
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• Time course of 
   cluster population
   - Points averaged in 50ns windows
        - All trajectories in 
          ensemble considered

NPxxY  Motif

χ1 Torsion

System Structure Notes Simulation Time (µs)
Dark-opsin 1U19 retinal removed 6 4.0

Opsin 3CAP 6 4.0
Meta I “Meta I” from previous simulation 6 4.7
Meta II 3PXO 6 4.0

Total ≈100 µs


