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LfB6 (RRWQWR-NH,) is a tryptophan- and arginine-rich antimicrobial peptide with m

broad spectrum effectiveness derived from bovine lactoferrin. Membrane binding POPC POPE-POPG (3:1) Changes in Minimum and Maximum

occurs via electrostatic interactions between arginines and negative charges on the ,Po':_‘;dm | PoPest POPE-a3t Quadrupolar Splittings (Avq) for LB Peptides . Acyl C-H bond orientation relative  Discussion
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lar dynamics (CG-MD) simulations have confirmed subtle differences between ' ' ' . S.__is the difference in order pa- . Order increased for POPE by C6-
1:100 (peptide to lipid) LfB6 and C6-LfB6 in bilayers composed of 3:1 POPE:POPG Lipid Only M M M _ -ameter between the membrane LfB6. but POPG is decreased
(anionic, bacterial-like) and POPC (zwitterionic, mammalian-like). MD simulations = : ; — | : : — : : NS 8 52.1(-2.1) 5.3 (-0.4) 53 (-3.0) i _ ;
reveal that the arginines of C6-LB6 make first contact with POPE:POPG; whereas 0 ; 4040 ; 4040 ; 40 ropTR e R P P P E \glt peptide and fhe neat mem-
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the C6 tails are first to contact POPC. LfB6 shows no sequence preference. Addi- D | T~ POPE-d31:POPG 5.2 54.0 5.7 56.4
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emission fluorescence spectra suggests the tryptophans in LfB6 and C6-LfB6 are | | + C6-LfB Native 5.3 (+0.1) 53.8 (-0.2) 5.3 (-0.3) 53.9 (-2.5) POPE (Exp) -4~ POPG (Exp) - | | [OPC(Sim)—s—"POPC (Exp)-s--

0.005 |

more water exposed in neutral compared to anionic membranes, while CG-MD + LfB6 | : -
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lipid bilayers. Although both peptides at 1:100 show significant membrane effects : B N 1.5 = 15 10.005
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