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Structure-based simulations reveal
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ABSTRACT

G protein-coupled receptors (GPCRs) are a vital class of proteins that transduce biological signals across the cell membrane.

However, their allosteric activation mechanism is not fully understood; crystal structures of active and inactive receptors

have been reported, but the functional pathway between these two states remains elusive. Here, we use structure-based (G�o-

like) models to simulate activation of two GPCRs, rhodopsin and the b2 adrenergic receptor (b2AR). We used data-derived

reaction coordinates that capture the activation mechanism for both proteins, showing that activation proceeds through

quantitatively different paths in the two systems. Both reaction coordinates are determined from the dominant concerted

motions in the simulations so the technique is broadly applicable. There were two surprising results. First, the main struc-

tural changes in the simulations were distributed throughout the transmembrane bundle, and not localized to the obvious

areas of interest, such as the intracellular portion of Helix 6. Second, the activation (and deactivation) paths were distinctly

nonmonotonic, populating states that were not simply interpolations between the inactive and active structures. These tran-

sitions also suggest a functional explanation for b2AR’s basal activity: it can proceed through a more broadly defined path

during the observed transitions.
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INTRODUCTION

G protein-coupled receptors (GPCRs) are a class of

biomedically important membrane proteins with roles in

diverse functions such as sight, muscle contraction, and

gene transcription. They are also targeted by an esti-

mated 25–50% of FDA approved drugs.1–3 These mem-

brane proteins function as allosteric transducers,

responding to environmental stimuli and activating sig-

nal pathways inside the cell.

Many class A GPCRs are hypothesized to contain a

number of microswitches comprised of conserved struc-

tural motifs.4–10 These include the CxWP motif in the

protein’s hydrophobic core, the E/DRY region on trans-

membrane Helix 3 (TM3), and the NPxxY motif on

Helix 7 (TM7). The latter two features are both on the

intracellular side of the receptor, adjacent to the G pro-

tein binding site. It has been suggested that these con-

served regions play key roles in GPCR activation. The

CxWP region is hypothesized to act as a toggle, or

“transmission” switch, interacting directly with the ligand

and coupling the binding pocket to the protein at

large.8,11

The outstanding efforts of many labs have yielded high-

resolution structures of these proteins, revealing the domi-

nant conformations of both the active and inactive states

for rhodopsin and the b2 adrenergic receptor (b2AR).12–20

These structures are vital to understanding GPCR signaling,

and together with dynamics studies are advancing our

understanding of GPCR function.8,9,21–31 The emerging

image is that functionally important regions of the protein

are allosterically coupled to one another loosely,6,9,32 rather

than in a specific, ordered, and linear cascade. While the

end states of these motifs are experimentally characterized at

high resolution,4–8,16,33–35 there is still much to learn

about how these states interconvert.
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Molecular simulation can provide insights into protein

dynamics at unparalleled resolution; no experimental

method can track the position and interactions of every

atom with angstrom and picosecond resolution. How-

ever, current computational resources limit the amount

of data that can be collected, often resulting in a paucity

of sampling.22,36–38 In order to obtain a statistically

representative ensemble, a number of methods have been

developed to allow faster sampling, such as replica

exchange and metadynamics.39,40

Alternatively, one can use a simpler, less computation-

ally expensive model to describe the system. One such

group of methods bases the forcefield itself on structural

data. Structure-based models of dynamics construct a

potential based on a particular set of initial coordinates.

These models were pioneered by G�o and coworkers41,42

to study protein folding. Since then, they have under-

gone many refinements aimed at better-characterizing

biomolecules and extending their resolution.43–45 These

and similar models have also been used for studying

functional transitions.46–54

In the current study, we model the activation of two

canonical GPCRs, rhodopsin and b2AR, using the

structure-based potential described by Whitford

et al.44,45 We use both experimentally motivated and

data-derived reaction coordinates to describe the struc-

tural transitions. The biological meaning of the data-

derived coordinates is discussed and these coordinates

are used to quantify the differences between b2AR and

rhodopsin activation pathways.

METHODS

Structure-based models

These simulations use a G�o-like force field, where the

only favorable long-range interactions are those present

in the native structure. As a result, the native state is sta-

ble even in the absence of water or lipids. In this study,

we used an atomistic variant of this method developed

by Onuchic and coworkers44,45 utilizing the web-based

parametrization tools.55 The Hamiltonian was described

using the “Shadow Map” algorithm developed in Noel

et al.56 This model provided all-heavy-atom resolution

and made extensive sampling feasible, allowing us to

carefully quantify the statistical error in our dataset. We

performed these calculations using two proteins, rhodop-

sin and b2AR, each in both the active and inactive states;

the structures used are identified in Table I. All coordi-

nates were obtained from the protein data bank (www.

pdb.org). There are several different structures of both

proteins to choose from, so we chose active/inactive pairs

that were most similar in terms of mutations and the

regions experimentally resolved. In these simulations no

attempt was made to model the membrane; rather, we

relied solely on the conformation present in the crystal

structures. The Hamiltonian was defined by the starting

structure, as expected with a G�o-model, and the protein

did not unfold in any simulations.

Simulating structural transitions with G�o models

To simulate a structural transition, we began by para-

metrizing a G�o-like potential for the target state, for

example, the active form of rhodopsin. We ran simula-

tions using that potential but starting from the other state,

in this case the inactive structure. As a result, the protein

efficiently undergoes a transition from the inactive to the

active form. One important caveat is that these simula-

tions are not in equilibrium, since the starting structure is

unlikely and thus over represented statistically. This strat-

egy is similar to that used by Sanbonmatsu and

coworkers57 in their work on the ribosome.

Simulation protocol

After the initial system setup, the protein underwent an

energy minimization scheme using the steepest decent and

then conjugate gradient methods, in order to reduce forces

sufficiently and allow stable dynamics; this typically required

1500–3000 steps of minimization in total. We then ran

300,000 steps of dynamics using a timestep of 0.0001 and a

temperature of 50; as previously noted,44,45 the potential

defined by SMOG does not use conventional units. Simula-

tions were performed using gromacs 4.5.4.58 For each sys-

tem (b2AR and rhodopsin) and each simulation type

(activation and deactivation) an ensemble of 1,000 trajecto-

ries was produced, for a total of 4,000 trajectories.

Simulation analysis

Custom analysis tools were written using the LOOS

framework (version 2.0.5, http://loos.sourceforge.net). LOOS

is an extensible, object-oriented analysis toolkit designed to

interface with the native file formats of all major simulation

packages.59 Principal components were calculated using

singular value decomposition.60 Data were plotted with

gnuplot (version 4.6, http://www.gnuplot.info), structures

and movies were made with LOOS and rendered in PyMol

(version 1.6, http://www.pymol.org).

Comparing two eigensets

To quantify the similarity between two PCA results,

we used the covariance overlap method (Equation 1),

first derived by Hess.61 This is a normalized metric for

Table I
PDB Accession Numbers of Structures Used

Protein Inactive Active

Rhodopsin 1U1913 3PXO15

b2AR 3NY818 3P0G19
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comparing two eigensets, where 0 indicates complete

orthogonality and 1 indicates the data is identical.

Importantly, the covariance overlap takes both the eigen-

vectors (directions of motion) and the eigenvalues

(amplitudes of motion) into account and has been used

to compare long-timescale conformation changes.38,62–66

It is defined here as XA,B where A and B represent the

two eigensets being compared:
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Here, k represents a single eigenvalue associated with

the eigenvector, m. This value is summed over all N nor-

mal modes.

Contact-based reaction coordinate

In order to define a reaction coordinate, we looked

specifically to the unique set of contacts that changed

between the active and inactive crystal structures. A

unique contact is defined as one that is present in one

state but not the other. For the current study, we defined

two residues to be in contact when the centroids of their

sidechains were within 8 Å of each other. This analysis

included all residues in the transmembrane bundle that

were resolved in both the active and inactive crystal

structures (see Table II). This set of contacts—both those

broken and those formed—was monitored throughout

each simulation. We constructed a matrix made from the

timeseries of each contact throughout the simulation.

The value of each cell was defined by:

uijðtÞ5
1

2
tanh ðrijðtÞ28Þ1 1

2
(2)

where rij is a the distance between residues i and j, at

time t. The tanh function makes a smooth transition

between formed (value � 0) and broken (value � 1)

states. By contrast, if a simple binary function is used,

the variance of the contact matrix is dominated by the

fluctuations of residue pairs that sit near the 8 Å cutoff

in one of the crystal structures. We then performed prin-

cipal component analysis (PCA) in contact space using

singular value decomposition, and used the first two

principal components as our reaction coordinate.

Statistical convergence

Using the principal components as reaction coordi-

nates is only reasonable if they are robust across the

dataset. In order to assess how many transition trajecto-

ries are required to confidently describe the pathway, we

used a bootstrap estimate of the variance in principal

components. This was done by first varying the sample

size from 5 to all 1,000 trajectories for a given system

(see Simulation protocol section). For each sample, a set

of 30 independent bootstrap datasets were created. Carte-

sian space PCA (using the alpha-carbons of the trans-

membrane helices) and contact space PCA were then

performed on each of these sets. We then assessed the

self-consistency of the modes produced as a function of

data set size. This was done by computing the average

absolute dot product of a single mode across all 30 boot-

strap samples. The results, plotted in Supporting Infor-

mation Figures S1 and S3, show that PC1 was extremely

well defined in both the Cartesian space and the contact

space results; however, PC2 was heterogeneous in the

Cartesian space PCA, suggesting noise or degeneracy in

the paths. By contrast, both PCs were well defined when

using contact space PCA.

RESULTS AND DISCUSSION

Dynamics of biologically conserved regions
tell a conflicting story

We first set out to find a suitable reaction coordinate

for activation by following the approach used by Dror

et al.,67 analyzing the dynamics of two highly conserved

regions: the NPxxY motif in transmembrane Helix 7

(TM7), and the ionic lock (between TM3 and TM6).

These regions are illustrated in Figure 1. Briefly, the tyro-

sine residue in the former motif is thought to disrupt

the interhelical hydrogen bonding network and stabilize

the active conformation,4,15,16,19,68,69 while it has

been suggested that R3.50 forms a salt bridge with E6.30

(the so-called ionic lock) that stabilizes the inactive

state.70,71 Both of these regions differ between the active

and inactive forms of the receptor and have been

Table II
GPCR Transmembrane Regions Used in Calculations

Protein TM1 TM2 TM3 TM4 TM5 TM6 TM7

b2AR W1.31-Q1.59 V2.38-M2.67 N3.22-I3.54 N4.40-Q4.62 N5.35-K5.66 K6.29-I6.60 E7.33-R7.55

Rhodopsin W1.29-K1.59 P2.38-H2.67 P3.22-V3.54 N4.40-V4.62 N5.35-Q5.71 T6.25-T6.60 I7.33-M7.56

Superscripts use the notation developed by Ballestoros and Weinstein82
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implicated in the GPCR activation mechanism; however,

their connection in the allosteric cascade is not fully

understood.5–8,33,69,70

Recently, Dror et al.67 used analyses of these two

regions as a reaction coordinate to describe b2AR deacti-

vation. They suggested deactivation occurs by a two-

stage process, where the NPxxY region transitions to a

more inactive-like structure first, followed by the ionic

lock closing as TM6 moves toward the rest of the helical

bundle. We performed a similar analysis on our

structure-based simulations (Fig. 2). Here, we measured

both the NPxxY region RMSD from the inactive crystal

structure and the distance between ionic lock residues as

a function of time. The path taken by b2AR during acti-

vation [Fig. 2(a)] shows the NPxxY region beginning to

deviate from its inactive form before the lock is fully

open. This order was actually the opposite of that

reported for b2AR deactivation,67 but matched simula-

tions of M2 muscarinic receptor activation performed

using accelerated MD.72 By contrast, the path taken in

our structure-based simulations of b2AR deactivation

[Fig. 2(b)] is similar to that reported by Dror et al.67

During deactivation, the NPxxY motif assumed a more

inactive-like conformation before the ionic lock is

formed. This was an encouraging result suggesting that

this simple model produces dynamics similar to state-of-

art all-atom results.

The difference in transition order [as seen between

Fig. 2(a,b)] suggests that the paths of activation and

deactivation are not necessarily the same. There are two

likely explanations for this difference. One may be a sim-

ple kinetic issue; the NPxxY transitions are local rear-

rangements and thus can occur quickly, while the ionic

lock reports on the larger structural transition of a whole

helix, and thus proceeds more slowly. Since our simula-

tions begin in a nonequilibrium state, relaxation kinetics

(as opposed to equilibrium fluctuations) control the

pathway, and as such the paths can be different. Alterna-

tively, it is possible that the activation and deactivation

Figure 1
Overview of conserved regions. Rhodopsin is shown as a cartoon using
rainbow coloring (a) in the plane of the membrane and (b) from the

cytoplasmic side. (c) Location of the NPxxY motif in TM7 is high-

lighted in black. The ionic lock between TM3 and TM6 is shown in its
(d) closed and (e) opened state. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Figure 2
Transitions in cytoplasmic motifs during activation and deactivation.
Plots show the RMSD to the inactive NPxxY region (using the inactive

structures in Table I). RMSD was calculated using backbone heavy atoms
(y-axis). This is plotted with the distance between ionic lock residues

(R3.50 to E6.30) using the minimum distance between heavy atoms (x-

axis). Data color indicates the trajectory time (arbitrary units). The active
(cyan circle) and inactive (green circle) crystal structures are plotted for

reference. 1,000 simulations are shown for each of the four systems stud-
ied: (a) b2AR activation, (b) b2AR deactivation, (c) rhodopsin activation,

and (d) rhodopsin deactivation. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]
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paths differ because different potentials are used in the

two sets of simulations.

The results were quite different for rhodopsin [Fig.

2(c,d)]. The ionic lock made a clear transition in both

activation and deactivation simulations (Panels c and d),

but there was no notable transition in the RMSD of the

NPxxY region; in both the activation and deactivation

simulations, the NPxxY motif prefers to stay near the

inactive conformation.

The fact that this coordinate does not better capture

the activation mechanism of rhodopsin was quite

intriguing. While b2AR and rhodopsin have similar

structures, and this region is well conserved, they per-

form diverse tasks and are activated in distinct ways.

That these two regions worked well as a reaction coordi-

nate for b2AR, but not rhodopsin, and that b2AR’s acti-

vation path is qualitatively different from its deactivation

path emphasizes the importance of choosing a reaction

coordinate carefully and quantitatively analyzing the

paths described. Proteins are high-dimension objects,

and projecting their motions into a small number of

reaction coordinates is both necessary and risky; a good

choice will allow intuitive understanding of the results,

while a poor choice may be actively misleading.

Principal component-based reaction
coordinate reveals nonmonotonic transition
pathway

Transitions identified by Cartesian PCA

Arguably the best way to be sure the reaction coordi-

nate captures the information from the simulation is to

derive the coordinate directly from the data. In this case,

we used principal component analysis (PCA) to extract

the most concerted motions in the simulations. We first

applied PCA to the Cartesian coordinates of the trans-

membrane ca’s.60,73–77 Figure 3 shows the result of

projecting the trajectories along the first two principal

components with axes showing the unscaled displace-

ment along those modes.

These results indicate that even when using a data-

driven coordinate system—one designed to pick up only

the largest concerted motions—the transition path is not

a simple linear interpolation between the two crystal

Figure 3
Principal component-based reaction coordinate. PCA of the covariance matrix in Cartesian space is used to define the principal axes. Color shows
the log-scale population from all simulations projected onto principal components one (x-axis) and two (y-axis) for all 1,000 trajectories in each

ensemble. Displacement units are arbitrary. Data is shown for simulations of (a) b2AR activation, (b) b2AR deactivation, (c) rhodopsin activation,
and (d) rhodopsin deactivation. In all cases the peak population density indicates the final structure. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

N. Leioatts et al.

2542 PROTEINS

http://wileyonlinelibrary.com


structures. Rather, in all cases PC2 overshoots the average

value and then must backtrack as the protein progresses

in PC1. This in turn shows the value of the simulations,

revealing that structures populated during the transition

may have characteristics that are not obvious from the

end states alone.

One crucial question that must be answered is whether

the data set is sufficiently large to allow reliable interpre-

tation; while 1,000 independent transitions seems like a

large dataset, it is still important to test convergence

quantitatively. We show the results in Supporting Infor-

mation Figure S1, where we used a bootstrap procedure

to estimate how many trajectories are needed to produce

consistent PCA results that can be used as meaningful

reaction coordinates. Specifically, we randomly selected

sets of trajectories (with replacement), computed the

PCA for each set, and measured the mean absolute dot

product between their first or second principal compo-

nents. By tracking this quantity as a function of data set

size, we can assess the reliability of the principal axes.

For example, Figure S1(a) shows that for the b2AR acti-

vation system, the absolute dot product converges (to

�1) with fewer than 200 trajectories, indicating both

eigenvectors are very well converged; similarly, Panel e

shows that that variance has dropped below 1024; rho-

dopsin deactivation (Panels d and h) behaves similarly,

while b2AR deactivation (Panels b and f) converges

somewhat more slowly. By contrast, the rhodopsin acti-

vation converges very slowly (Panels c and g), with the

dot product remaining low and the variance high even

for sets with 1,000 trajectories. The poor convergence,

specifically in rhodopsin activation, is possibly due to the

fact that the active structure is more open, and fluctua-

tions after this transition are less well defined. Thus, this

reaction coordinate, while intuitive, may not be the best

possible choice; we will explore a contact-based alterna-

tive in Contact-based reaction coordinate reveals putative

allosteric network section.

Visualizing modes of motion

In order to better understand the PCA results, we

mapped the first two modes back onto the protein struc-

tures for simulations of activation (Fig. 4) and deactiva-

tion (Supporting Information Fig. S2); the arrows on the

structure indicate the direction and relative magnitude of

motion. PC1 [Fig. 4(a,b)] showed a large displacement

of Helix 6 (orange helix in the upper left of each panel)

outward in both proteins, as expected. By contrast, in

PC2 [Fig. 4(c,d)] TM6 makes a rotating motion in both

b2AR and rhodopsin, reminiscent to what was seen in

previous all-atom work.60 The amplitude of motion

around the NPxxY region was markedly greater in b2AR

(Panels a and c) compared to rhodopsin (Panels b and

d) for both PC1 and PC2. TM5 also made appreciable

changes during rhodopsin activation, extending the

intracellular portion of TM5 (Panels b and d, yellow

helix). It is worth noting that all regions of the protein

are affected. Results for deactivation were largely similar

(as illustrated in Supporting Information Fig. S2).

Contact-based reaction coordinate reveals
putative allosteric network

Transitions identified by contact space PCA

Because PC2 was poorly defined for rhodopsin activa-

tion when using standard Cartesian-space PCA, we also

applied an alternative procedure that is outlined in

Contact-based reaction coordinate section, performing

PCA on time series of inter-residue contacts as instead of

the coordinates. This analysis focuses on changes in

topology as opposed to simply structure, and thus con-

verges faster for flexible systems. Specifically, we calcu-

lated the time-progression of each unique contact to

make a “transition matrix” where each cell is built using

Figure 4
Direction of the most concerted motions in activation. Principal com-

ponents (from the analysis described in Transitions identified by Carte-
sian PCA section) are plotted as silver-tipped black vectors extending

from ca’s on protein cartoons. Vector length is proportional to each
residue’s contribution to the principal component. The initial protein

structure (the inactive state) is shown with the NPxxY motif and TM6

labeled. The spectrum bar shows the residues sequence number. Data is
shown for (a) PC1 ofb2AR, (b) PC1 of rhodopsin, (c) PC2 of b2AR,

and (d) PC2 of rhodopsin. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]
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[Eq. 2]. We then computed the principal components of

this matrix using singular value decomposition and used

the first two components as a reaction coordinate for

each of the trajectories (Fig. 5). As expected, this pro-

duced well-defined principal components; Supporting

Information Figure S3 shows that fewer than 200 trajec-

tories would be necessary in all cases.

The contact-based reaction coordinates yielded similar

results to those found using Cartesian-space PCA. They

identified a single, highly populated transition path for

all four systems, characterized by deviations in the first

two principal components. Here, we again observe that

the trajectory of PC2 was nonmonotonic for both pro-

teins (Fig. 3). In order to better understand why the sys-

tem did not proceed directly to the final structure we

analyzed the individual contacts more carefully.

Individual residues make nonmonotonic transitions

Both PCA-based reaction coordinates revealed a path

that was nonmonotonic; the system “overshot” the mini-

mum energy structure, particularly in PC2. This fact was

especially evident in the contact-based reaction coordi-

nate (Fig. 5 and Supporting Information Fig. S4). The

physical interpretation of this path is that some contacts

that form (or break) during activation have a higher

(lower) probability of being formed during the transition

than they do in the end state. Such “backtracking” was

noted before by Gosavi et al.78,79 In any given trajec-

tory, these contacts regularly break and reform (Support-

ing Information Movie 1), so an average over many

separate transitions is needed to reveal the pattern

(Fig. 6).

The nonmonotonic motion in PC2 was most pro-

nounced early in the trajectories—within the first 50,000

integration steps (or 1/6th of the trajectory; Supporting

Information Fig. S4). This backtracking in PC2 suggests

that there was some steric hindrance preventing the main

transition identified by PC1. In this view PC2 serves pri-

marily to relieve strain in the molecule by moving atoms

out of the way and thus facilitating activation. This is

most clear in Supporting Information Figure S4(A),

which shows that PC2 in b2AR activation has roughly

the same value at the beginning and end of the

simulation.

To better understand these transitions, we plot the

state (formed or broken) of individual contacts for the

first third of each trajectory; after that, nearly all trajec-

tories had reached their target state and were fluctuating

about it. To reduce noise, we present the average time

Figure 5
Contact-based general reaction coordinate. Displacement along PC1 and PC2 of the “transition matrix” (Contact-based reaction coordinate section)
is shown. Color indicates the relative population of these displacements (log scale) across all trajectories. Displacements are given in arbitrary units.

Data is shown for simulations of (a) b2AR activation, (b) b2AR deactivation, (c) rhodopsin activation, and (d) rhodopsin deactivation. [Color fig-

ure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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series for each unique contact in Figure 6, considering all

1,000 activation trajectories (results for deactivation are

plotted in Supporting Information Fig. S5).

Figure 6(a,b) highlights two contacts randomly chosen

from our rhodopsin activation simulations. Panel a

shows a contact that transitions monotonically: once that

contact forms it remains formed throughout the simula-

tion. By contrast, the plot in Figure 6(b) shows a contact

that forms only briefly and is then rebroken. The curves

are colored by transition value (Equation 2), where

formed contacts are red and broken contacts are black.

In Figure 6(c,d), this analysis is expanded to all contacts

(with color still representing transition value), but here

the y-axis contains the set of all unique contacts formed

(top plot) or broken (bottom plot). In both b2AR and

rhodopsin activation, there is “checkering” in the x-axis,

indicating multiple contacts make “backtracking” transi-

tions to their starting orientation [similar to those con-

tacts plotted in Fig. 6(b)]. These contacts were spread

throughout the protein and not localized to any specific

region as can be seen in Supporting Information Figure

S6. Details for deciding which contacts are nonmono-

tonic, or backtrack are provided in the Supporting Infor-

mation. That residue contacts reform and rebreak shows

there is some topological frustration80 in the transitions,

despite the fact that no such frustration is built into the

model itself. This underscores the need for dynamics

data to complement structural information.

To better understand the complex mechanisms under-

lying protein function, it will likely be necessary to study

their dynamic properties directly. This is particularly

important for GPCRs, where many allosteric ligands

modulate activity in different ways; recent simulations

suggest that activation occurs via distinct pathways when

Figure 6
Contact transitions during activation. The average transition value (color) across all 1000 trajectories is plotted using [Eq. 2]. Red indicates a

formed contact and black one that is broken. (a and b) Single contacts selected from rhodopsin activation illustrate monotonic and nonmonotonic

transitions. (a) Example of a monotonic transition. (b) An example contact that makes a backward transition. (c and d) Each unique contact (y-
axis) is shown as a separate row. The first 100 frames (x-axis) are shown for (c) b2AR activation and (d) rhodopsin activation. [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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different ligands are bound.28,31 The method presented

here not only identified a nontrivial reaction coordinate,

but it also resulted in a putative network of interactions

that are vital to activation. This network was defined in

terms of a reduced dataset that allowed quantitative

comparison between the four different systems studied

(see Section entitled “Proteins activate via quantitatively

different pathways”). The problem that remains is how

to biologically interpret the reduced set of motions

described in contact space.

Interpreting the contact-based coordinate

To visualize changes in contact space, we mapped the

principal components back onto the structures them-

selves, with bonds showing those contacts crucial to acti-

vation. Specifically, we drew bonds between the ca’s of

residues making unique contacts, using the thickness of

the bonds to indicate the variance of that contact within

the component shown. For clarity, we only show those

contacts that cumulatively constitute half of the ampli-

tude of each principal component. In addition to activa-

tion (Fig. 7), results obtained for deactivation

(Supporting Information Fig. S7) and for PC2 (Support-

ing Information Figs. S8 and S9) are available in the

Supporting Information.

Interestingly, these contacts were spread throughout

the proteins and not limited to the obvious areas of

change, such as the cytoplasmic face and TM6. Figure 7

revealed a network of contacts that may be fundamen-

tally important to GPCR signaling. These bonds show

how the whole protein is linked in contact-space, and

their presence in the most concerted principal compo-

nent suggests that an allosteric connection exists between

the hydrophobic ligand binding pocket and the cytoplas-

mic G protein binding site. This demonstrates the power

of letting the data speak for itself, rather than constrain-

ing analysis to a preconceived reaction coordinate.

In b2AR, we identified a cluster of contacts near the G

protein binding site that is broken on activation [Fig.

7(a)]. This included contacts between TM6 and the

NPxxY motif in TM7. However, contacts are simultane-

ously formed between the more extracellular portions of

TM6 and TM7. At the same time, multiple contacts

between the intracellular portions of TM5 and TM6

form [Fig. 7(b)]. This mode gives a potential mechanism

Figure 7
Contacts characterizing activation. The contacts whose transitions contributed the most to PC1 (i.e., those accounting for 50% of PC1 displace-

ment) are mapped onto cartoons of b2AR and rhodopsin as bonds between ca’s. The bond thickness is proportional to the contribution made to
the principal component. Bonds broken during a activation are shown in blue, those formed are shown in purple. Cartoons of inactive protein are

colored yellow to orange, the active proteins are colored yellow to green. The spectrum bars indicate residue numbers. Panels (a) and (b) show data
for b2AR activation simulations. Panels (c) and (d) show data for rhodopsin activation simulations.
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explaining how the ligand, located in a pocket toward

the extracellular portion of the protein, can alter the

structure and dynamics of the intracellular face.

In rhodopsin, the contacts were also spread over the

whole surface of the protein. A cluster on the extracellu-

lar side of Helices 5, 6 and 7 was identified with contacts

both breaking and forming [Fig. 7(c,d)]. Notably, there

is precedent for extracellular motion in rhodopsin, and

others have suggested this motion may impact the con-

formation of the extracellular loops, specifically during

activation.81 In the future, it would be interesting to

experimentally test the importance of these contacts

using mutagenesis or crosslinking experiments.

Another surprising result was that there were many

more contacts contributing to the first principal compo-

nent in rhodopsin than in b2AR (Supporting Informa-

tion Table Si). This corroborates an observation we

noted previously: although dark-state rhodopsin has a

vanishingly small basal activity, it was much more flexi-

ble than b2AR in all-atom simulations.60 In the current

study, rhodopsin transitions involved more contacts than

b2AR, but b2AR populated a broader range of structures

during transitions [Fig. 5(a,b) vs. (c,d)].

Proteins activate via quantitatively different
pathways

In both Cartesian and contact-based results, the path

traversed by rhodopsin was narrower than in b2AR; this

can be seen by visual inspection of Figures 3 and 5. The

highly-populated endpoint was also broader in b2AR

than in rhodopsin. Together, this suggests that b2AR

activation may proceed through a more diverse ensemble

of states and that its active ensemble may be more

expansive. This makes functional sense as b2AR has

detectable basal activity, while rhodopsin acts like a

switch, with essentially no activity when its ligand is

bound in the 11-cis form. Using both data-derived PCA-

based reaction coordinates, we quantitatively compared

the transition paths using previously established methods

for comparing eigensets from biomolecular covariance

matrices.36,38,61,62

To make this comparison we used the covariance over-

lap [Eq. 1]. For each iteration two trajectories were

selected at random and compared. This process was

repeated 100 times for each data point in Figures 8 and

9. In those figures we report the average value 6 standard

deviation. These samples were also used to test for statis-

tical significance in the difference between pathways

using a Welch’s T-test.

How similar are the paths taken by b2AR and rhodopsin?

First, we compared transition paths taken by b2AR to

those taken by rhodopsin (Fig. 8), for both activation

(blue) and deactivation (red) simulations. For each data-

set, trajectories were randomly chosen and compared

using the covariance overlap [Eq. 1]. This analysis was

performed using Cartesian PCA results (contact-based

results (8b). Additional details of this analysis are pro-

vided in Supporting Information Methods (Section

S1.3). Both panels follow the same format, with compari-

sons between activation simulations in blue and compar-

isons between deactivation simulations in red. We first

compared sets of b2AR simulations to themselves (b2AR)

by selecting 100 pairs of b2AR activation eigensets and

computing the covariance overlap for each pair. Simi-

larly, the second bar shows a comparison of eigensets

obtained from rhodopsin activation simulations (rho-

dopsin). Finally, we compared the paths from these two

Figure 8
Similarity between b2AR and rhodopsin transitions. The average covari-

ance overlap [61] is shown for a random subset of 100 trajectories to
compare the pathway taken by b2AR to that taken by rhodopsin. The

error bars represent the standard deviation. Data is shown for overlaps
between (a) Cartesian-space PCA and (b) contact-based PCA. Within

each panel results are split into activation simulations (blue bars) and
deactivation simulations (red bars). The average overlaps were calcu-

lated between: a pair of b2AR simulations (b2AR), a pair of rhodopsin

simulations (rhodopsin), and from a b2AR simulation to a rhodopsin
simulation (cross). The difference in overlap between b2AR simulations

and a cross-comparison, and between rhodopsin simulations and a cross-
comparison were found to be statistically significant (P< 0.05); P values

are listed in Table Sii. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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proteins to one another, creating pairs by pulling an

eigenset from each ensemble (cross). The cross compari-

son was significantly lower than either self comparison

(as measured using Welch’s T-test, at a significance level

of 0.05). This demonstrates that the proteins take statisti-

cally different paths. The P values between the overlaps

are listed in Supporting Information Table Siii).

We also found that b2AR-b2AR overlaps were lower

than the rhodopsin-rhodopsin overlaps, suggesting more

variance in b2AR pathways. This correlates well with the

broader b2AR transition as seen in Figure 5, reinforcing

the idea that there is a larger variance in b2AR paths. As

mentioned before, this larger variance may be indicative

of b2AR’s ability to activate spontaneously.

The covariance overlaps are systematically lower for

the contact-space PCA [Fig. 8(b)] than for Cartesian-

space [Fig. 8(a)]. This is expected, because the dimen-

sionality of the contact-space analysis is significantly

higher, and our previous work showed that the covari-

ance overlap decreases systematically with increased

matrix size65; this is discussed further in Supporting

Information (Section S1.3).

How similar are activation and deactivation?

Next, we compared the pathways of activation and

deactivation for each protein (Fig. 9). This was done sep-

arately for b2AR (blue) and rhodopsin (red). When com-

paring two b2AR activation simulations (activation) or

two deactivation simulations (deactivation) the calculated

overlap was similar, indicating that the activation and

deactivation paths have similar heterogeneities. However,

when comparing an activation simulation to a deactiva-

tion simulation (cross), the drop in covariance overlap

was statistically significant for both proteins; thus, in

these calculations, deactivation is not a simple reversal of

the activation path. This is consistent with our previous

qualitative analysis in Dynamics of biologically conserved

regions tell a conflicting story section and Figure 2.

As experimental structures for other GPCRs become

available it will be important to quantitatively identify

their activation pathways, especially in the context of

related proteins. Also, as more computational resources

become available similar analyses should be performed

using more rigorous models. In particular, the quantita-

tive assessments of statistical error discussed above will

be critical in figuring out precisely how much sampling

is needed to get reliable results. Our data indicates that

using the contact-space PCA requires roughly 200 trajec-

tories to be fully converged, so at present this is probably

beyond the reach of even the most powerful brute-force

calculation,67 although alternative sampling strategies

may be plausible.31

CONCLUSION

We used G�o-like models to simulate activation of two

model GPCRs, rhodopsin and the b2 adrenergic receptor.

While an experimentally motivated reaction coordinate

captured b2AR transitions, it proved inadequate when

applied to rhodopsin. We therefore introduced a novel

data-derived coordinate based on the unique set of con-

tacts that change between two states of a molecule. Using

this coordinate, we were able to track the changes in

activation of both proteins. These results were corrobo-

rated by a standard Cartesian-based PCA analysis. We

showed that transition paths taken by the two proteins

were statistically different, indicating the diversity of

GPCR activation. In addition, b2AR transitions were

more heterogeneous, suggesting a possible explanation

Figure 9
Similarity between activation and deactivation pathways. The average

covariance overlap61 is shown for a subset of 100 trajectories, chosen
randomly. The error bars represent the standard deviation. Results are

shown for (a) covariance-based PCA and (b) contact-based PCA. Data
is split into b2AR simulations (blue bars) and rhodopsin simulations

(red bars). The bars represent overlaps between: a pair of activation

simulations (activation), a pair of deactivation simulations (deactiva-
tion), and from an activation simulation to a deactivation simulation

(cross). The difference in overlap between activation simulations and a
cross-comparison, and between deactivation simulations and a cross-

comparison were found to be statistically significant (P< 0.05); P values
are listed in Table Siii. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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for b2AR’s basal activity. In the future, it will be impor-

tant to test this observation on other GPCRs as more

active-state crystal structures are published. Using a gen-

eral reaction coordinate that does not assume biological

knowledge a priori will likely be an important means to

differentiate the ensemble dynamics of proteins, and will

be important for fully understanding the mechanism of

their activation.
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