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INTRODUCTION

Molecular modeling is an important method for understanding the structure and dy-

namics, and hence function, of biological systems. This is particularly important for

systems such as membrane proteins where isolation and biophysical characterization

are difficult. The obvious choice for modeling the dynamics of a system is all-atom mo-

lecular dynamics (MD), which represents the motions and interactions of the system

with atomic detail. While this method can provide extraordinarily detailed information,

it is computationally very expensive. Microsecond-scale simulations of G protein-

coupled receptors (GPCRs) embedded in a lipid bilayer represent the state of the art in

large-system long time-scale simulations and require supercomputing resources or

specialized hardware.1–6

Approaches that capture the predictive power of MD, at least on an abstract level,

and yet are tractable using readily-available computational power would be valuable.

Elastic network models (ENMs) are one promising approach. Network models are

based on the observation that the low-frequency modes, corresponding to large-scale

collective motions are relatively insensitive to the details of the underlying model in

normal mode analysis (NMA). Early work by Tirion7 found that replacing the detailed

forcefield typically used in a NMA with single-parameter harmonic potentials yielded

modes virtually indistinguishable from the more detailed models. ENMs expand upon

this idea by replacing the detailed forcefield used in NMA and MD with a set of elastic

springs connecting a network of nodes that represent the topology of the protein

system. A thorough review of the history and application of ENMs can be found in

Bahar et al.8 In particular, Bahar’s group has applied ENMs to GPCRs with significant

success.9,10

Despite the apparent simplicity of the models used in ENMs, their ability to describe

collective motions is impressive, particularly when compared with their computational

cost. The typical network model consists of a set of nodes attached to each other by

simple harmonic springs with minimum energy distances set to match the starting

structure. Most commonly, Ca’s are used as the nodes; all Ca’s within a prescribed dis-

tance (12–15 Å) are connected to each other. Higher level abstractions for nodes are

also possible and are often found in multiscale modeling methods.8,11 Conversely,

there is no constraint on using more detailed models, such as Ca nodes with additional

nodes to represent side-chains; the objective is to balance the predictive power and

computational expense.

The dimensionality of the problem can also be reduced by partitioning the model,

and hence the Hessian.12,13 One such method, called Vibrational Subsystem Analy-

sis14,15 (VSA), partitions the model into a region of interest (subsystem) for which a

NMA is computed, and an environment that can react to the subsystem modes.
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ABSTRACT

Elastic network models (ENMs)

are a class of simple models

intended to represent the col-

lective motions of proteins.

In contrast to all-atom mo-

lecular dynamics simulations,

the low computational invest-

ment required to use an

ENM makes them ideal for

speculative hypothesis-testing

situations. Historically, ENMs

have been validated via com-

parison to crystallographic B-

factors, but this comparison

is relatively low-resolution

and only tests the predictions

of relative flexibility. In this

work, we systematically vali-

date and optimize a number

of ENM-type models by

quantitatively comparing their

predictions to microsecond-

scale all-atom simulations of

three different G protein

coupled receptors. We show

that, despite their apparent

simplicity, well-optimized ENMs

perform remarkably well,

reproducing the protein fluc-

tuations with an accuracy

comparable to what one

would expect from all-atom

simulations run for several

hundred nanoseconds.

Proteins 2011; 79:23–34.
VVC 2010 Wiley-Liss, Inc.

Key words: normal modes;

principal component analysis;

convergence; fluctuations; G

protein-coupled receptors.

VVC 2010 WILEY-LISS, INC. PROTEINS 23



In the context of comparing ENM results for different

proteins, the VSA partitioning provides a convenient

method for reducing the NMA to the common subset

between proteins while retaining the contributions from

the extraneous parts. In this work, we compare three dif-

ferent GPCR structures, each composed of a seven-trans-

membrane helical bundle with intervening intra- and

extracellular loops of different lengths. We partition the

protein into a subsystem composed of the common

transmembrane (TM) Ca’s and relegate the remaining

Ca’s (including the loops) to the environment. Such a

partitioning is depicted in Figure 1 for the b2-adrenergic

receptor (b2AR), using a cutoff radius of 10 Å to improve

the clarity of the figure. The alternative approach is to clip

the network to the common nodes. The potential difficulty

here is that modes at the edges of the subset (e.g., the ends

of the TM helices) may be perturbed since their interac-

tions with the rest of the protein are absent.

In this work, we examine the use of long time-scale mo-

lecular dynamics simulations for validating and improving

upon the ENM results. We use VSA to compare the collec-

tive motions of different GPCRs and contrast this with the

more ‘‘classical’’ anisotropic network model (ANM). We

also show that improving the spring constants used in the

ENM can have a significant impact on the ability of the

ENM to reproduce the fluctuations found in the long

time-scale molecular dynamics. Finally, we give a method

for assessing the time-scale equivalence between the ENM

and MD fluctuations, that is, the length of an MD simula-

tion required to predict the fluctuations in a long simula-

tion with equal fidelity as the ENM.

METHODS

Three different microsecond scale all-atom molecular

dynamics simulations were used in this study. The first is

a 1.02 ls simulation of the b2AR embedded in a lipid

bilayer via the constant temperature ensemble.1 The sec-

ond system is a 1.6 ls simulation of dark-state rhodopsin

embedded in a bilayer using the constant energy ensem-

ble.4 The final system is a � 1.9 ls simulation of an acti-

vated (protonated) Cannabinoid CB2 receptor (CB2) em-

bedded in a bilayer using the NVT ensemble.16 All simu-

lations were performed at an average temperature of 310

K using BlueMatter6 on the BlueGene/W supercom-

puter5 located at the IBM T. J. Watson Research Center

in Yorktown Heights, NY. In the subsequent analysis, all

MD trajectories were sampled at 1 ns.

Elastic network models

ENM construction

The ENM was constructed by taking the Ca’s to be

the nodes of the network. For each protein, we computed

the average Ca position from the entire trajectory using

an iterative alignment procedure17 with the TM Ca
atoms as reference points. An illustration of what the

network looks like for b2AR is shown in Figure 1.

The Hessian used is the typical ANM Hessian18–20:

Hij ¼ gCij
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where Hij is a 3 3 3 superblock of the Hessian, Gij is the

spring constant between the ith and jth nodes, and g is a

constant used to assign an effective temperature. Rij is

the vector representing the spring, that is, between the

two nodes’ equilibrium position.

In the ANM formulation, the spring constants are uni-

form, that is, Gij 5 1 for Rij < rc and 0 otherwise. The

Figure 1
The VSA network for b2AR. The Ca nodes are shown as gray spheres.

The lines connecting the nodes represent the ENM ‘‘springs.’’ The

springs that are colored red are part of the ‘‘environment’’ while the

blue springs are the ‘‘subsystem’’ composed of the transmembrane

helices. For illustrative purposes, a distance cutoff of 10 Å was used in

determining spring connections.
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HCA method21 instead uses distance-based spring con-

stants:

CðRijÞ ¼ ar þ b for r < rc
cr�d for r � rc

�
ð2Þ

where r is the length of the intranode vector Rij. The pa-

rameters originally used in HCA were rc 5 4.0 Å, a 5
205.5 kcal mol21 Å23, b 5 571.2 kcal mol21 Å22, c 5
3.059 3 105 kcal mol21 Å4, and d 5 6. In our implemen-

tation, the overall cutoff radius used in constructing the

network was 15 Å. In addition, the spring constants were

constrained to always be positive (i.e., negative spring con-

stants, found at very short distances, were set to 0).

Vibrational subsystem analysis

The idea behind VSA is to partition the system into a

subsystem and an environment, integrating out the

‘‘environment’’ fluctuations to report their average effect

on the subsystem.12,14,15 The environmental degrees of

freedom are integrated out while allowing the environ-

ment to respond to changes in the subsystem by mini-

mizing the total energy. Although a full derivation is

available in Woodcock et al.,14 we will sketch the under-

lying logic here. The normal mode equation is rewritten

with the partitioning as,

Hss Hse

Hes Hee

� �
Vs

Ve

� �
¼ k

Ms 0

0 Me

� �
Vs

Ve

� �
ð3Þ

Hss and Hee are the subsystem and environment Hessians

respectively, and Ms and Me are diagonal matrices con-

taining the masses for the corresponding nodes, in tripli-

cate to match the dimensionality of the Hessians.

The normal mode equations above can be reduced to

a generalized eigenvalue problem,

H 0
ssVs ¼ kM 0

sVs ð4Þ

where the ‘‘effective’’ subset Hessian and mass matrices,

H0
ss and M0

s are given by,

H 0
ss ¼ Hss � HseH

�1
ee Hes

M 0
s ¼ Ms þ HseH

�1
ee MeH

�1
ee Hes

The resulting subsystem eigenvectors, Vs, are ‘‘mass or-

thogonal’’ and must be mass-weighted to be orthogonal

in cartesian space and comparable between different

solutions:

V 0
s ¼ M1=2

s Vs ð5Þ

We used the LAPACK22 routine DSYGVX to solve the

generalized eigenproblem above, and DTRMM to perform

the Cholesky decomposition23 of Ms and hence the

square root.

The contribution of the environment’s mass can be

excluded by setting Me to zero, leaving only the diagonal

matrix Ms in Eq. (4) above.12,24 In our implementation,

the subsystem used unit masses and the corresponding

eigenvectors, Vs, are orthogonal and do not require

mass-weighting. We used DGESVD to compute the singular

value decomposition (SVD) of H0
ss.

In this study, we investigated three different methods of

handling mass in VSA. We used the zero environment mass

with unit masses for the subsystems. We also assigned unit

masses to both the subsystem and the environment. Finally,

we assigned the total residue mass to each Ca node.

To apply the VSA method to GPCR’s, each GPCR

structure was partitioned into a subsystem, consisting of

the common TM Ca’s, and an environment, consisting

of the non-TM Ca’s (i.e., the loop regions). To simplify

comparison, we selected the equivalent residues from

each protein based on a sequence alignment: 1.30–1.59

(in Ballesteros-Weinstein notation25), 2.38–2.67, 3.22–

3.54, 4.40–4.62, 5.35–5.68, 6.29–6.60, and 7.33–7.55. This

yielded a subsystem composed of 205 Ca’s, out of 282

total for b2AR, 360 for CB2, and 384 for rhodopsin.

We also re-optimized the five constants in the HCA

method—a, b, c, d, and rc—using a Nelder-Mead sim-

plex optimizer26 to maximize the covariance overlap

between the ENM and all-atom molecular dynamics

principal component analysis (PCA) (see Section

‘‘Principal component analysis’’ for details), subject to

the constraints that rc and d must always be positive

and nonzero. In the case of fitting against

multiple models, that is, simultaneously optimizing

both b2AR and rhodopsin, the sum of the covariance

overlaps (see Section ‘‘Covariance and subspace over-

lap’’) for each model was maximized. CB2 was left

out of the optimization as a control. Each variant of

VSA was optimized for a new set of HCA parameters,

referred to as HCA*, and the corresponding parame-

ters are shown in Table I.

Implementation

The different ENM models and spring constant assign-

ments are implemented using the LOOS library27 and

are freely available from SourceForge (http://loos.source-

forge.net). LOOS is an object-oriented library imple-

mented in C11 that uses Boost and ATLAS (for linear

algebra) to provide a lightweight but powerful library

designed for facilitating the creation of new analytical

tools for molecular dynamics. Included in LOOS is a

‘‘selection expression’’ parser that enables tools to easily

select atoms out of a model for analysis based on user-

provided selections. LOOS supports the native file for-

mats for most major MD packages, such as

CHARMM28/NAMD,29 Amber,30 Gromacs,31 and Tin-

ker.32 LOOS comes bundled with over 50 different tools,

including those for computing different ENMs.

Validating ENMs with MD
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Mode comparison

Principal component analysis

PCA of a molecular dynamics trajectory yields a set of

eigenvectors that point along the modes of motion for

each atom. We implemented PCA in LOOS27 using the

SVD,23 an alternative methodology that is equivalent to

the more common covariance matrix analysis formalism.

Briefly, at each time point, the chosen coordinates are

stacked vertically to form a 3n dimensional vector (where

n is the number of atoms) representing the protein con-

formation at that time point. These column ‘‘conforma-

tion’’ vectors are concatenated to form a 3n 3 L matrix A,

where L is the length of the simulation. Thus, A represents

the ensemble of structures in the simulation. The average

conformation is subtracted off, Â ¼ A� A, where the av-

erage is computed by an iterative alignment scheme.17

This eliminates rigid body rotations and translations in

the MD simulation. Finally, the SVD is computed,

A ¼ URVT ð6Þ

using LAPACK.22 The U matrix is a unitary orthonormal

matrix whose columns, called left singular vectors, describe

the modes of motion of atoms in A and are equivalent to

the eigenvectors of AT A in the more common PCA for-

malism. The diagonal elements of S, or ri, are the singu-

lar values of A and are equivalent to
ffiffiffiffi
ki

p
, where ki are

the eigenvalues of the cross-correlation matrix AT A.

Covariance and subspace overlap

We used two different measures to compare the sub-

spaces determined by both the ENM and PCA methods.

The first is the subspace overlap,33,34 defined as

WA;B ¼ 1

N

XN
i

XN
j

ð~vAi �~vBj Þ2 ð7Þ

where ~vAi is the ith eigenvector from simulation A and ~vBj
is the jth eigenvector from simulation B. It is typically

computed for a subset of eigenvectors, that is, N < 3n

where N is the number of modes, since it is usually the

first few modes that contribute most to the overall fluc-

tuations of the system. The value ranges from 0, where

the modes are completely dissimilar to 1, where the

modes are identical (or more precisely, the subspace

spanned by each set of modes are identical). Critically,

the eigenvalues are not used.

By contrast, the covariance overlap measures not just

the similarity of the eigenvectors, but their relative impor-

tance as well.17,33,34 The covariance overlap ranges in

value from 0 (no overlap between the fluctuation space) to

1 (identical fluctuation spaces), and is defined as,

XA;B¼1�

PNmodes

i

kAi þkBi
� ��2
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i
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The eigenvalues obtained from an ENM represent fre-

quency, whereas the PCA eigenvalues represent amplitude.

In the harmonic model, x ! 1/k, therefore to compare

the ENM eigenvalues with the PCA eigenvalues, we must

use the reciprocal ENM eigenvalues. Both approaches give

six zero eigenvalues however, representing the rigid-body

rotation and translation of the entire system, which must

be excluded. Next, because ENMs only set relative magni-

tudes of motion, they must be scaled such that the total

power (or magnitude of fluctuations) between the ENM

and PCA results are similar. This is performed by scaling

the inverted ENM eigenvalues by,

k ¼
P

i k
A
iP

i k
B
i

ð9Þ

where ki
A is the ith PCA eigenvalue and ki

B is the ith recip-

rocal ENM eigenvalue.

Block overlap

To assess the ability of a shorter simulation to predict

the motions described by a longer trajectory, a ‘‘block

overlap’’ method was devised, similar in spirit to block

averaging.35,36 Given a long trajectory, a PCA is first

computed for the entire length, L frames, of the simula-

tion; for the purposes of this analysis, the full trajectory

is treated as the ‘‘gold standard.’’ The trajectory is then

divided into N contiguous blocks of L/N frames. A PCA

Table I
HCA Constants Optimized Against b2AR and Rhodopsin via Simplex for Different VSA Implementations

Method rc (�) a (kcal mol21 �23) b (kcal mol21 �22) c (kcal mol21 �4) d

Me 5 0 3.479 235.246 821.952 5.340 3 105 10.025
Ms 5 Me 5 1 4.148 275.042 908.567 5.332 3 105 7.146
Residue mass 4.304 283.160 933.608 5.366 3 105 7.100

Me 5 0 used unit subsystem and zero environment masses. Ms 5 Me 5 1 used unit masses for both partitions. ‘‘Residue mass’’ assigned the total mass of the residue

to the ENM node.
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is computed for each block, and the covariance overlap

[Eq. (8)] with the full trajectory is computed. The aver-

age overlap is then plotted as a function of increasing

block size. As the blocks get longer, the covariance over-

lap will asymptotically approach 1.

RESULTS AND DISCUSSION

Several groups have explored different ways to set the

individual spring constants including assigning a differ-

ent constant for backbone atoms,37 to different con-

stants for covalent versus noncovalent interactions,38

and a ‘‘parameter free’’ method that does not use a cut-

off and uses an inverse square distance as a spring con-

stant.39 Other groups have investigated using short

(tens of nanoseconds) MD simulations to derive improved

spring constants.40,41

The particular method we tested is known as the HCA

method,21 shown in Eq. (2), which uses two different dis-

tance-based function selected by a cutoff radius. The stand-

ard ANM Hessian for b2AR and the HCA Hessian are

shown in Figure 2. It is readily apparent that in spite of

using a 15 Å cutoff for the ANM Hessian, there is a sharp

cutoff between neighboring nodes and more distant nodes.

In contrast, the HCA Hessian shows both a narrower range

in constants and a more uniform distribution of values.

Panel C shows the Hessian using an optimized set of HCA

constants (HCA*, described above) that sharpens the Hes-

sian and increases the dynamic range.

Because we used the MD average structure as the

model for the ENM, which may be ‘‘unphysical,’’ it is

possible that nodes may be sufficiently close together

that they are assigned negative spring constants by the

HCA-based methods. This can lead to negative eigenval-

ues and a failure of the underlying NMA. We therefore

constrained the spring constants such that any negative

constants were set to 0. An alternative strategy is to find

the structure in the trajectory that is closest to the MD

average and to use this for the network model. We

implemented this and found that the overall trends

described here held, but the covariance overlaps are

slightly lower than those found with the MD average

and truncated spring constants.

Method comparison

Comparing the subspaces defined by the different

models and methods requires comparing not only the

directions defined by the eigenvectors but also the shape

of the fluctuation space defined by the eigenvalues as

well. One common measure is the subspace overlap

shown in Eq. (7). The subspace overlap can be driven

arbitrarily to 1 by choosing a sufficiently large cutoff n,

so the cutoff is usually chosen such that the correspond-

ing modes describe the bulk of the fluctuations in the

model (i.e., the first several dozen modes). The difficulty

is that it now depends upon an arbitrary cutoff, and it

still does not consider the shape of the corresponding

power spectrum—if mode 1 contributes 12% of the

motion in one solution, but the corresponding mode in

Figure 2
Effect of different methods of assigning spring constants on the b2AR

ANM Hessian matrix. Panel A shows the standard ANM method using

a cutoff radius of 15 Å. Panel B shows the HCA method. Panel C shows

the simplex-optimized HCA constants. This illustrates the increase in

dynamic range of the Hessian in the simplex-optimized HCA method

and how both methods include a broader range of neighbor-contacts

over the standard ANM Hessian.

Validating ENMs with MD
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another solution is the fifth and only contributes 3%, this

difference in their relative importance is lost. Alternatively,

imagine a two-dimensional fluctuation space where the

principal axes are identical, but where one distribution is a

narrow ‘‘pencil’’ shape and the other is nearly circular. The

eigenvectors for these spaces match each other, giving a

subspace overlap of 1. The shapes described by the eigen-

vectors and eigenvalues, however, are vastly different. In

contrast, the covariance overlap [Eq. (8)] weights the dot

products by the corresponding eigenvalues incorporating

information about the shape of the respective power spec-

tra. An important consideration when using the covariance

overlap occurs when both sets of the eigenvalues are all

similar in magnitude. In this case, the covariance overlap

turns into effectively a subspace overlap over the entire set

of eigenvectors, leading to an unexpectedly high overlap.

The covariance overlap also reduces to the subspace over-

lap in the case where all ki are either 0 or 1.
The comparison of the different methods for the three

different systems against their long time-scale MD simu-

lation PCA results is shown in Table II. Both the covari-

ance and subspace overlaps are shown. For each method,

the ‘‘standard’’ Hessian along with the HCA and HCA*

Hessians are compared. The benefit of a distance-based

spring constant assignment are obvious. The use of HCA

in either ANM or VSA outperforms the standard

method. Applying a simple optimization to the HCA

constants yields a significant improvement in the mass-

less VSA overlaps. Interestingly, optimizing the HCA pa-

rameters for b2AR and rhodopsin also improves the

overlap for the massless VSA of CB2 even though CB2

was not used in the optimization. The overlaps for CB2

do not change when using the other forms of VSA (each

ENM method was optimized individually). An additional

cross-validation of the optimizations was performed
where the HCA parameters were optimized for b2AR
then the VSA HCA* was computed for rhodopsin and
compared against the MD PCA result. The resulting co-
variance overlap was 0.46. Similarly, optimizing against
rhodopsin and using these HCA parameters for b2AR
resulted in a covariance overlap of 0.54. The resulting HCA
parameters were slightly different between the two individ-
ual optimizations, but the general form (i.e., 3.0 Å � rc �
3.5 Å and d 5 10) was the same. This suggests that the
optimization against long time-scale MD may convey a
universal improvement in the ENMs, at least across class A
GPCRs. This result strongly suggests that the predictive
power of ENMs in general can be improved through care-
ful choice of their spring constants.

Surprisingly, the VSA implementations with mass did
not outperform the ANM models. Indeed, even the best
massless VSA model performed only slightly better than
the ANM with HCA*. It is possible that this is due to
the particular systems explored here; perhaps, the edge
effects are not as large for simple helical bundles like
GPCRs. Regardless, VSA also suggests a clean formalism
for including membrane-protein interactions in an ENM
approach, which may be important for further research.

One of the more interesting features of the b2AR tra-

jectory is the partial unwinding of the cytoplasmic end

of TM helix 6 (TM6) with the opening of the ionic lock

and the subsequent reforming as the lock closes,1 which

is captured by the first mode of the PCA on that trajec-

tory, shown in Figure 3. Searching the massless VSA

HCA* modes for the closest match in the top-25 modes

finds the 20th mode with a dot-product of 0.82. In con-

trast, the best match in the top-25 modes for the mass-

less VSA HCA is the 25th mode with a dot-product of

0.5 (not shown in Fig. 3).

Table II
Covariance and Subspace (N 5 25) Overlap Between Different Network Models and Principal Components

Computed from Molecular Dynamics

Methods

b2AR Rhodopsin CB2

Covariance Subspace Covariance Subspace Covariance Subspace

ANM 0.37 0.37 0.32 0.33 0.36 0.40
ANM (HCA) 0.50 0.54 0.42 0.46 0.46 0.50
ANM (HCA*) 0.55 0.66 0.44 0.51 0.47 0.57

VSAy 0.36 0.43 0.32 0.45 0.35 0.41
VSAy(HCA) 0.48 0.60 0.41 0.54 0.43 0.56
VSAy(HCA*) 0.56 0.69 0.48 0.55 0.52 0.61

VSA{ 0.37 0.42 0.33 0.43 0.34 0.40
VSA{(HCA) 0.47 0.55 0.41 0.52 0.42 0.50
VSA{(HCA*) 0.49 0.56 0.42 0.49 0.42 0.49

VSA§ 0.37 0.42 0.32 0.41 0.34 0.38
VSA§(HCA) 0.47 0.53 0.40 0.50 0.42 0.49
VSA§(HCA*) 0.48 0.54 0.42 0.49 0.41 0.47

*Optimized HCA parameters. The bold overlaps indicate CB2 was not used to optimize the HCA parameters.
yVSA computed using zero masses for the environment.
{VSA computed using unit masses.
§VSA computed using sum of all masses in the corresponding residue.
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Comparing GPCRs

The PCA of the MD trajectories show that the fluctua-

tions between the different GPCRs are not very similar. Ta-

ble III lists the similarity of fluctuation spaces between the

different GPCRs for massless VSA, massless VSA with

HCA*, and PCA on the entire trajectory. The PCA results

were compared by normalizing the eigenvalues by the tra-

jectory length. The ENM results were compared without

using any scaling [i.e., Eq. (9)] to test whether the ENM

captured differences in overall flexibility. The low covari-

ance and subspace overlaps for the PCA between the differ-

ent GPCRs however indicates that the fluctuations sampled

by each are not very similar.

Surprisingly, VSA overstates the covariance overlap to

a remarkable degree, although VSA-HCA and VSA-HCA*

do not. Because the subspace overlap does not show the

same problem, we believe this phenomenon is a due to

peculiarities of the eigenvalue distribution for VSA, in

particular the significant contributions from the long

‘‘tail’’ of relatively similar, nonzero eigenvalues. We tested

this numerically by creating an artificial data set consist-

ing of the eigenvectors generated from PCA of b2AR

combined with eigenvalues from VSA. The covariance

overlap of this synthetic data set with VSA eigenvalues

and eigenvectors was 0.74. By contrast, if we reverse the

comparison, using a synthetic data set consisting of VSA

eigenvectors and PCA eigenvalues with the true PCA data

set, gives a far more reasonable overlap of 0.36. This sug-

gests that it is the VSA eigenvalues that are driving the

anomolous covariance overlap.

A further numerical test demonstrates that the tail

plays the critical role. We fit the PCA eigenvalue distribu-

tion to a double exponential, f(x) 5 a exp(2x/b) 1 c

exp(2x/kd) 1 e and generated multiple sets of eigenval-

ues where 1 � k � 10. The covariance overlap was then

computed using the eigenvectors from the VSA and PCA

models of b2AR with the simulated eigenvalues. The co-

variance overlap ranged from 0.39 for k 5 1 to 0.65 for

k 5 10. In other words, by increasing the relative contri-

bution of the tail of the eigenvalue distribution, we can

drive the covariance overlap higher.

Since the subspace overlap only considers the first N

modes and neglects the eigenvalues, it is not vulnerable

to this difficulty, at the cost of containing less informa-

tion. Were the fluctuations more similar between the dif-

ferent GPCRs with VSA, we would have expected the

subspace overlap to be higher for VSA than the more

refined models. Instead, the better ENM models (e.g.,

VSA-HCA*), show increased similarity with the results

from PCA for both overlap quantities. For example, the

covariance overlap for VSA HCA between b2AR and rho-

dopsin is 0.57 with a subspace overlap of 0.31 (N 5 25).

The performance of VSA HCA* (shown in Table III) is

even closer.

In addition, the distribution of fluctuation magnitudes

along the PCA modes are quite different between these

GPCRs. The average mean squared fluctuation along

each mode is shown in Figure 4. This is defined as ki
nL

where ki is the ith eigenvalue, n is the number of atoms,

and L is the trajectory length (i.e., number of structures).

Figure 4 shows that b2AR is significantly less mobile

(smaller fluctuations) than rhodopsin and, for the first

mode, is half that of CB2. The rigidity of b2AR relative

to rhodopsin was previously noted in Romo et al.1 We

see here that the increased motion is confined to the 10

lowest-frequency modes for rhodopsin, and 15 or so

modes for CB2. The magnitude of fluctuations for the

higher-frequency modes are comparable amongst the

GPCRs.

Figure 3
The first mode of the PCA for b2AR is shown here as dark gray vectors

focusing on the intracellular end of TM6. In the MD simulation, this

stretch of TM6 unwinds briefly during the opening of the ionic lock,

and then reforms as the lock closes. The 20th mode of the massless

VSA HCA* method is shown in light gray. No similar vectors were

found in the top 25-modes of the nonoptimized VSA HCA results.

This shows a qualitative improvement in the biological relevance of the

modes predicted by the VSA HCA* method.

Table III
Comparison of Different ENM Methods and PCA Between the Different

GPCRs

Rhodopsin CB2

VSA VSA HCA* PCA VSA VSA HCA* PCA

b2AR 0.70/0.23 0.41/0.36 0.26/0.33 0.70/0.25 0.41/0.34 0.26/0.32
Rhodopsin 0.71/0.28 0.42/0.34 0.24/0.29

The first number is the covariance overlap followed by the subspace overlap (N 5
25). The VSA used zero masses for the environment subset.

*Optimized HCA parameters.
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Power spectra

The results from the covariance overlap emphasize that

comparing the directions of the eigenvectors is necessary

but not sufficient to fully compare the two fluctuation

spaces. The shape of the distribution of modes, that is,

their power spectra must also be taken into considera-

tion. The power spectra for both ANM, massless VSA,

and PCA for rhodopsin are shown in Figure 5. The frac-

tional contribution of each mode to the total fluctua-

tions, that is, kiP
i
ki
, is plotted on a log-scale. Here again

the PCA of the MD trajectory is taken as the ‘‘gold stand-

ard.’’ Figure 5(A) shows the spectrum over all 609 modes.

It is immediately obvious that the ANM and VSA models

underestimate the magnitude of the low-frequency modes

while severely overestimating the magnitude of the higher-

frequency modes. Although the VSA-HCA model improves

the spectrum slightly, it is still considerably different from

the PCA spectrum. The ANM-HCA* and VSA-HCA*

methods, in contrast, are much closer to the PCA spec-

trum, although they still underestimate the importance of

the first mode. Interestingly, the PCA spectrum shows a

small ‘‘dip’’ near the mode 400, and all HCA methods

show a sigmoidal step at nearly the same mode.

Figure 5(B) shows a closeup of the first 30 modes.

Here, the underestimation of the magnitude of the first

15–30 modes for the ANM, VSA, and VSA-HCA meth-

ods are obvious.

This under–over estimation pattern seen with the

ENM models can also be found when comparing shorter

MD simulations against a longer one. The time-depend-

ent PCA power spectrum, shown for rhodopsin in Figure

6, is computed by dividing the MD trajectory into con-

tiguous blocks of a given size, performing PCA on each

block, and computing the corresponding fractional con-

tribution to fluctuations for each mode. These are then

averaged over all blocks of the same size and plotted

against block-size. Block sizes up to 250 ns, already a

substantial length for a system of this size, underestimate

the contribution of the first two modes by around 35%

and then overestimate the higher-frequency modes. Even

at 750 ns, the lower frequency modes are underestimated

and the higher frequency modes overestimated. This fig-

ure shows that care must be taken when making asser-

tions about collective motions based on short MD simu-

lations and that very long trajectories are needed if MD

is used to guide ENM enhancements.17,35 Similarly, it is

possible that the microsecond-scale simulations used here

are long enough to characterize the low-frequency collec-

tive fluctuations, while very long by current standards.

Figure 5
Panel A shows the rhodopsin power spectrum between PCA, VSA, and
ANM using the standard of assigning spring constants, the HCA

method, and the optimized HCA method. The power spectrum is

normalized to 1, giving the contribution of each mode to the overall

motion of the model, and plotted on a log scale. Panel B shows a

closeup of the first 30 modes. A consistent pattern of underestimating

the magnitude of the low-frequency motions while overestimating the

high frequency motions is seen in all ENMs. However, a significant

improvement is seen in the HCA* power spectra.

Figure 4
The average mean-square fluctuations per atom contributed by each

PCA mode is shown for each GPCR. b2AR is clearly more rigid than

rhodopsin and CB2. Beyond 10 modes, the difference is negligible.
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ENM robustness

The ability of the ENM solution to withstand perturba-

tions in the equilibrium structure used for the network is

of some concern. It is possible that by using the average

structure from the MD simulation, we are biasing our

ENM results more favorably toward the MD PCA. We

assessed the ability of the ENM to withstand perturbations

by the following method: first, the average structure for the

entire trajectory is found using an optimal iterative align-

ment procedure.17 This structure is used to compute a ref-

erence ENM using the massless VSA HCA*. Frames are

drawn from the MD trajectory at random and used to

compute a new ENM, and the covariance overlap is then

computed between the two ENM results. In Figure 7, the

covariance overlaps are plotted against the RMSD

between the frame and the average structure. In addition,

the covariance overlap for ENMs constructed from five

different X-ray crystallographic structures of rhodopsin

are also shown. This shows that there is considerable

overlap between ENM solutions where the starting struc-

ture is within 1.5 Å RMSD. Even at the 2 Å RMSD of the

crystal structures, there is still a significant overlap. The

similarity in fluctuation spaces between the crystal struc-

ture ENMs and the average MD structure ENM does

translate into similar overlaps with the MD PCA. Com-

puting a massless VSA-HCA* for each crystal structure

gives a covariance overlap of 0.46 for all of the crystal

structures, compared with 0.48 for the MD average struc-

ture.

Comparing efficiency of ENM and MD

All-atom molecular dynamics is the gold standard for

modeling protein fluctuations. However, it is computa-

tionally very expensive and sampling limitations lead to

statistical errors. By contrast, ENMs use a simple model

but have no statistical error. The question becomes, how

long must an MD simulation run before the statistical

error is smaller than the systematic error of the ENMs?

The first step is to quantify the statistical error present in

the MD. We do this by constructing a ‘‘block overlap’’ as

described in Section ‘‘Block overlap.’’ The average covari-

ance overlap as a function of block size for b2AR is

shown in Figure 8(A) and for rhodopsin in Figure 8(B).

Block sizes range from 25 ns to half of the trajectory

(500 and 800 ns, respectively). In the cases where the

block size is smaller than the number of degrees of free-

dom, there will be multiple zero eigenvalues. The covari-

ance overlap ignores these, by construction, and the

number of modes used in the subspace overlap is always

smaller than the number of nonzero eigenvalues. Treating

the full-length trajectory as the ‘‘gold standard,’’ this

graph then shows how well a shorter simulation can be

expected to produce ‘‘correct’’ fluctuations. Convergence

occurs very slowly; the b2AR covariance overlap does not

reach 0.5 until the blocks are 200 ns long, and even at

500 ns, the overlap is only 0.7. Rhodopsin requires nearly

500 ns to reach an overlap of 0.5 and only approaches

0.6 at the 800 ns point. This is not surprising considering

how much more flexible rhodopsin is than b2AR (see

Fig. 4). Moreover, while these trajectories are long, by

current standards, they almost certainly still have signifi-

cant statistical error.35

The covariance overlap for the PCA of a given block

size, compared against the full MD trajectory, gives an

estimate for what time-scale the ENM is equivalent to in

Figure 7
The sensitivity of ENM solutions to structural perturbations is shown by

comparing massless VSA HCA* ENMs computed from randomly selected

frames of the full rhodopsin trajectory against the ENM computed using

the average structure from the entire trajectory. The covariance overlap

between five different X-ray crystal structures and the overall average ENM

is also shown. This demonstrates that the ENM solutions are relatively

insensitive to perturbations in the starting structure.

Figure 6
The PCA power spectrum depends on the length of the trajectory. The first

10 modes of the average power spectrum for different block sizes is shown.

The power spectrum for the full trajectory PCA is shown in black. As the

trajectory gets longer, more importance is assigned to the lowest frequency

modes. Mode 2 also changes significantly from 750 to 1605 ns.
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terms of the ENM’s ability to describe the fluctuations

present in a long time-scale MD simulation. For example,

the massless VSA overlap for b2AR is 0.36, which inter-

sects the block overlap curve at 50 ns. Thus, we can say

that the sampling quality of VSA is roughly equivalent to

50 ns of simulation; considering the relative computa-

tional expense of the two methods, this is impressive.

Similarly, the VSA-HCA overlap is 0.48, corresponding to a

block size of about 150 ns. Improving the spring constants

in the Hessian has increased the effective ‘‘simulation time’’

of the ENM by 100 ns. The VSA-HCA* is 0.56, which cor-

responds to another 100 ns increase. The best ENM model

for b2AR then is equivalent to roughly 250 ns of MD sim-

ulation, yet computing this result takes seconds on a con-

temporary desktop as opposed to weeks on a supercom-

puter. Interestingly, in the case of rhodopsin, the effective

simulation times are even longer with VSA equivalent to

100 ns, VSA-HCA equivalent to 225 ns, and VSA-HCA*

equivalent to 400 ns of simulation time. This occurs

because rhodopsin is more flexible than b2AR and thus

sampling it with MD is more challenging.

Because CB2 was not used in optimizing the HCA pa-

rameters used in the VSA calculations for Figure 8, it

serves as a control.

Figure 8(C) shows the fluctuations predicted by the

VSA-HCA* of CB2 to be equivalent to �600 ns of MD.

This is double the equivalent time-scale for the standard

HCA implementation. This further suggests the optimi-

zations made in HCA* using b2AR and rhodopsin are

not specific to either those two systems or their MD

trajectories.

Long time-scale molecular dynamics simulations are

invaluable for understanding the low-frequency collective

motions of biomolecules. This comes at a substantial cost

however. A quarter of a microsecond of all-atom MD for

the systems studied here takes several weeks to run on a

supercomputer. In contrast, the massless VSA HCA*

takes less than 5 s on a modern desktop, yet its ability to

accurately reproduce the low-frequency collective

motions of a multi-microsecond simulation is no worse

than the month-long MD. This is even more remarkable

considering the simplicity of the model (e.g., ignoring

side-chains) and that ENMs assume a harmonic model.

One caveat is that there is far more information available

in the MD simulation. However, it is arguable that if one

is interested primarily in larger scale motions, then one

might as well use ENM.

CONCLUSIONS

We have compared several different ENM methods

with long time-scale all-atom MD simulations for three

different GPCR systems. We found that while VSA pro-

vides a convenient means for separating similar structures

into comparable and different partitions, it does not per-

Figure 8
The covariance overlap for b2AR (panel A), rhodopsin (panel B), and

CB2 (panel C). The block overlap is the average overlap for all blocks

of a given size with the modes from the full trajectory. The error bars

are the standard deviations of the overlap for all blocks of a given size.

The maximum block size is half the length of the trajectory. The

horizontal lines illustrate the overlap values for the original VSA model,

giving an estimate for what time-scale the ENM is equivalent to in
terms of describing the fluctuations in a ‘‘gold standard’’ (long time-

scale) MD simulation. The VSA model using HCA spring constants and

the VSA model using the simplex optimized HCA constants. All VSA

models used unit subsystem masses and zero environment masses. CB2

was not used in determining the HCA* parameters.
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form significantly better than more traditional ENMs

(i.e., ANM) with respect to predicting the fluctuations

found in the MD simulations.

Our block overlap analysis and time-dependent power

spectrum analysis show that all-atom simulations of a

length that would normally be considered ‘‘long,’’ on the

order of several hundred nanoseconds, do not necessarily

describe the low-frequency fluctuations of the longer

simulations accurately. Indeed, there is a systematic error

present in both the shorter MD simulations and the

ENMs, where the low-frequency motions are underesti-

mated and the higher-frequency motions overestimated.

We have shown that by optimizing the spring con-

stants used in constructing the ENM Hessian, we can sig-

nificantly improve the ENM’s ability to reproduce the

fluctuations found in long MD simulations. The effect

on the ENM is equivalent to simulating an additional

100–300 ns of a comparable MD simulation. Moreover,

these optimizations are not specific to b2AR and rhodop-

sin, as shown by the improvements in CB2, which was

not part of the optimization procedure. Examining the

power spectra, however, indicates that while we have

improved the model, there is likely still room for

improvement with more sophisticated spring constants

models.

Finally, we have shown that the ENMs are fairly robust

with respect to the structure used to build the network.

These findings have important implications on the future

development and use of ENMs for probing long time-

scale collective motions. They should also serve as a re-

minder that care must be taken when characterizing the

low frequency collective motions with MD.
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