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ABSTRACT A dipole lattice model for lipid
membranes and their interactions with peptides is
presented. It uses the Langevin dipole method to
calculate electrostatic interactions in the heteroge-
neous membrane environment. A series of test cases
are presented, including spherical charges, dipoles,
side chain analogs, and helical peptides. The model
consistently produces qualitatively correct results.
Proteins 2000;41:211–223. © 2000 Wiley-Liss, Inc.
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INTRODUCTION

Membrane proteins are intimately involved in a wide
variety of biological processes. Despite their importance,
there is relatively little available structural information.
Although solution nuclear magnetic resonance (NMR) and
X-ray crystallography have yielded an enormous number
of high-resolution structures of soluble proteins, these
methods are more difficult to apply to membrane proteins.
Moreover, membrane proteins are generally harder to
overexpress and purify than soluble proteins. As a result,
there are fewer than 20 high-resolution membrane protein
structures in the protein databank.1 The relative paucity
of experimental data creates an environment in which
computational methods can be very valuable.

Indeed, there have been several significant theoretical
and computational contributions to the understanding of
membrane protein structure. One of the earliest was the
development of hydropathy analysis, which allowed the
accurate prediction of the locations of membrane spanning
helices.2,3 More recently, several groups have computation-
ally predicted the structure of the glycophorin A transmem-
brane domain dimer.4–6 Other groups have used Poisson-
Boltzmann or other electrostatic calculations to explore
the origins of membrane protein stability.7–12

Most of these efforts used very simple membrane mod-
els, which complicates detailed analysis of their results.
Specifically, they either ignore the membrane entirely,6 or
consider it to be a simple hydrophobic slab surrounded by
water.2,3,7–9 In a similar vein, one group recently pre-
sented a membrane model based on the “atomic solvation
parameters”,13 simply adjusting the parameters to repre-
sent an isotropic hydrophobic environment.14,15 Approxi-
mations of this nature assume that the membrane-water
interface is vanishingly narrow and that any location in
the membrane is adequately described as either bulk
hydrocarbon or bulk water. However, these assumptions

do not reflect the structure of real lipid membranes; the
interfacial region contains a mixture of water, lipid head-
groups, methylene groups, and even terminal methyls.16

This “tumultuous region of chemical heterogeneity” has
properties distinct from either the membrane interior or
bulk water.16 For example, small aromatic compounds,
such as indole, bind preferentially in the membrane-water
interface.17 Since membrane proteins often have trypto-
phan residues in the interface, this may be relevant for
membrane protein folding and stability.17 Moreover, sev-
eral biologically important peptides bind and fold in the
interfacial region.18–22

Some calculations have attempted to capture the com-
plexity of lipid membranes and their interactions with
proteins at the atomic level. Several groups have per-
formed all-atom molecular dynamics simulations of pure
bilayers,23–28 while others have focused on various mem-
brane permeants,29,30 peptides,31–33 and proteins.32–39

However, these are very expensive calculations, with the
result that the time scales are typically on the order of
nanoseconds, far too short to thoroughly explore conforma-
tional space. These problems exist in simulations of soluble
proteins, but are greatly exacerbated by the slow relax-
ation times and long relevant length scales of the mem-
brane environment.40

The present work describes a new method to calculate
the interaction of molecules with lipid membranes. The
membrane is modeled as a lattice of dipoles, using the
Langevin dipoles method.41,42 The dielectric heterogeneity
of the membrane is represented by making the intrinsic
moment of the dipoles a function of their position in the
membrane. As a result, our method can capture the effects
of a broad membrane-water interface while avoiding the
computational costs of all-atom simulations. A variety of
systems are treated, including spherical charges, dipole,
side chain analogs, and helical peptides.

METHODS

The key method used in this study is the representation
of the membrane by a lattice of permanent, freely reorient-

Grant sponsor: American Heart Association; Grant sponsor: Na-
tional Institutes of Health; Grant number: RR12600.

A. Grossfield’s present address is Department of Biochemistry and
Molecular Biophysics, Washington University School of Medicine.

*Correspondence to: Thomas B. Woolf, Department of Biophysics
and Biophysical Chemistry, Department of Physiology, Johns Hopkins
Medical School, 725 N. Wolfe Street, Baltimore, MD 21205. E-mail:
woolf@groucho.med.jhmi.edu

Received 28 January 2000; Accepted 22 May 2000

PROTEINS: Structure, Function, and Genetics 41:211–223 (2000)

© 2000 WILEY-LISS, INC.



able dipoles. The electrostatic heterogeneity of the mem-
brane is modeled by varying the magnitude of the perma-
nent dipoles as a function of their position in the bilayer.

Dipole Lattice Solvation Energies

The solvation free energy for a solute in a specific
location in the membrane is estimated by calculating the
response of the lattice dipoles to the solute partial charges.
The solvation free energy is written as a sum of four terms:
(1) electrostatic interaction between the solute’s partial
charges and the permanent dipoles of the lattice; (2)
electrostatic interactions between the lattice dipoles, after
polarization by the solute charges; (3) entropy lost by the
lattice dipoles when oriented by the electric fields induced
by the solute; (4) a cavitation penalty, calculated as the
dipole-dipole interaction lost by inserting the solute.

The orientational polarization of the membrane dipoles
is calculated using the Langevin response function43,41,42

mW L 5 m0Ê0Scoth y 2
1
yD , (1)

with

y 5
m0E0

kBT

In this notation, E0 is the electric field, Ê0 is the unit vector
parallel to E0, m0 is the dipole’s permanent moment, and
mW L is the thermally averaged moment. The Langevin
function can be derived exactly from the partition function
for a permanent dipole in an electric field at fixed tempera-
ture (see Appendix for derivation).

The electrostatic energy Uelec for a solute is calculated in
the following manner: (1) Place the solute in the lattice,
removing any dipoles which overlap the solute. (2) Calcu-
late the electric field at each dipole due to the solute’s
partial charges. (3) Calculate the dipoles induced by the
electric field, using the intrinsic dipole moment m0 and the
Langevin response function (Eq. 1). (4) Calculate the
electric fields due to the dipoles. (5) Calculate the total
energy of the system, and return to step 3 if the change in
the energy exceeds some tolerance. This procedure calcu-
lates the average electric field in a self-consistent manner.
The local fluctuations of the dipoles—and the resulting
fluctuations in the electric field—are not explicitly repre-
sented in this model. Instead, each dipole sees the average
field due to its environment. Although explicit fluctuations
of each dipole are replaced with its thermally averaged
response, we can calculate the entropy lost due to this
response as

DS 5 kB@ ln~sinh y! 2 y coth y 2 ln y# (2)

where y is as defined in Eq. 1. Equation 2 can be derived
exactly from the partition function for a permanent dipole
in a constant field (see Appendix for derivation). The total
entropy lost by the solvent is then calculated by summing
the entropies lost by the individual dipoles. Although
component entropies are not generally additive, this proce-

dure is correct in the context of a Langevin dipole model
(see Appendix).

The final part of the calculation is the cavitation term.
As described above, dipoles that overlap the solute are
removed from the system before any energy calculations
are performed. Because these are permanent dipoles, they
interact favorably with the surrounding dipoles, even in
the absence of solute partial charges to orient them.
Accordingly, this interaction is estimated using the follow-
ing expression

Ucav 5 kcav O
i

Excl O
j

Incl m0i
2 m0j

2

3kBT~4pe0!
2rij

6 (3)

where kcav is an empirical constant, and the two summa-
tions are over the dipoles excluded from the calculation
due to overlap and those remaining, respectively. The
functional form in Eq. 3 is taken from the potential of
mean force between two permanent dipoles at constant
temperature, also known as the Keesom energy.44 The
constant is necessary because we are using a relatively
weak term (the thermally averaged interaction of perma-
nent dipoles) to account for behavior that is generally
controlled by a significantly stronger term (dispersion
forces between induced dipoles). We have done so in order
to make maximal use of the quantities already present
within our model (the permanent dipole moments) and to
reduce the number of free parameters used to fit the model
to experiment (see Parameterization section). Moreover,
this formulation is easily generalizable to model heteroge-
neous environments.

In summary, the total solvation free energy is written

Fig. 1. A schematic for calculating solvation free energies with the
lattice dipole membrane model. Interactions between dipoles that have
been removed are not included, because these interactions are retained
after removal. The vertical lines indicate infinite separation.
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DA 5 Uelec 2 TDS 1 Ucav (4)

Figure 1 is a graphic representation of the solvation free
energy calculation. The solute is represented as a rigid
body in a vacuum, which is inserted into the membrane
lattice. The dipoles that overlap it are displaced into the
vacuum, still in their lattice configuration. As a result,
interactions between these dipoles do not change and can
be neglected. The energy change upon their removal is
proportional to the average interaction between them and
the dipoles remaining in the system (see Fig. 1).

Implementation Details

The membrane lattice model was implemented as part of
the Molecular Modeling Toolkit, MMTK, using a combina-
tion of the Python and C languages.45 All models were
constructed using bond, angle, and dihedral parameters
from the AMBER94 forcefield, and AMBER94 partial
charges were used in all electrostatic calculations.46 The
electrostatics calculations were typically performed using
an 8 3 8 3 16 cubic lattice (except as noted), with 4 Å
spacing, yielding a periodic system with a unit cell 32 3 32
Å in the membrane plane and 64 Å along the membrane
normal. We used a 12 Å cutoff for dipole-dipole and
charge-dipole interactions. For the purposes of identifying
dipoles overlapping the solute, all dipoles were assigned a
radius of 1 Å, while atomic radii were taken from the
AMBER94 parameters.46 The electric fields and induced
dipoles were iterated until the energy change was less
than 0.1%.

Calculations in a dipole lattice are vulnerable to lattice
artifacts; to compensate, one generally performs multiple
calculations, offsetting the lattice origin (or the solute) by a
fraction of the lattice interval.10 These artifacts are exacer-
bated in the present calculations by the heterogeneity of
the lattices in the z dimension. Previous calculations
considered an isotropic environment, where any position
dependence in the calculation was a lattice artifact.42,10 By
contrast, there is real positional dependence in the present
model; correctly assessing the dependence of the solvation
free energy on the solute’s location in the membrane is the
primary goal of our calculations. Accordingly, we took care
to properly average away lattice artifacts. Each free en-
ergy calculation was repeated multiple times; typically,
the solute was offset by 0 Å, 1.5 Å, and 3 Å in each
dimension (27 calculations in all). The intrinsic dipole
moments on the lattice were offset with the solute, such
that the position of the solute along the membrane normal
was preserved. This procedure is physically equivalent to
translating the lattice in the opposite direction. Since the
various offsets represent physically equivalent states, the
resulting quantities are arithmetically averaged.

The current choice of offsets is a compromise between
computational speed and precision; there is some oscilla-
tion in the calculated free energy curves due to lattice
artifacts. These oscillations are worst when the solute is
located in a polar environment and when the solute is
locally very polar. However, these oscillations do not
prevent qualitative analysis of the curves, and only moder-

ately diminish their precision. Moreover, if greater preci-
sion is desired, one can simply calculate more offsets in the
region of interest.

Parameterization

As currently defined, the model has three free parame-
ters, once the lattice spacing and type are defined: mhc (the
intrinsic dipole moment for dipoles in the hydrophobic core
of a membrane), mwat (the intrinsic dipole moment for
dipoles in the water region), and kcav, the multiplier for the
cavitation term. These parameters were chosen to repro-
duce transfer free energies for side chain analogs from
bulk hydrocarbons to water.47 It must be recalled that mhc

and mwat are not molecular parameters, and as such, there
is no direct connection between the dipole moment of a
single water molecule and mwat. Rather, mwat (when com-
bined with a specific choice of lattice spacing) reflects an
average dipole density, which allows the model to repro-
duce experimental results.

The parameterization was performed as follows: First,
side chain analogs were constructed for 16 of the 20 amino
acids. Proline was excluded because of its different back-
bone, glycine and alanine were excluded because of a lack
of available parameters to describe their respective ana-
logs, and arginine was excluded because parameters for its
neutral form were unavailable. The remaining charged
residues (glutamic acid, aspartic acid, and lysine) were
represented in their neutral forms. The additional free
energy to transform the analog from its uncharged to its
charged form was estimated from the pKa.48 No correction
was applied for histidine.

Each side chain analog structure was subjected to up to
1,000 steps of conjugate gradient minimization, to ensure
that it was relaxed. We then generated a library of
structures from a molecular dynamics trajectory. First, the
velocities of each molecule were initialized and scaled to a
temperature of 50 K. The temperature was then raised to
300 K over the course of 5 ps of dynamics, using a 1 fs
timestep. The structures were re-minimized, using 1,000
steps of steepest descent minimization, and reheated to
300 K. Finally, velocities were reassigned at 300 K, and
400 ps of dynamics were run. Structures were saved every
20 ps. All calculations were performed using the AM-
BER94 forcefield, as implemented in MMTK.46,45

Next, we calculated the solvation energy for each struc-
ture in our library in a series of homogeneous lattices,
where the intrinsic dipole moment of each dipole was
varied from 0.1 D to 1.0 D, in steps of 0.01 D, using an 8 3
8 3 8 lattice with 4 Å spacing and a 12 Å cutoff. We
calculated the transfer energies between all pairs of lat-
tices, with the restraint that mhc , mwat. For each combina-
tion, we chose kcav to minimize the average error between
our calculated transfer energies and the experimental
values.47 We found the best overall choice of parameters
was mhc 5 0.1D, mwat 5 0.87D, kcav 5 4.19 z 109. These
values gave an average error of 1.18 kcal/mol per residue,
with a standard deviation of 1.67 kcal/mol; for comparison,
the absolute values of the transfer energies (including
charge neutralization, where appropriate) ranged from 6.6
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kcal/mol (acetamide, the analog for aspargine) to 0.14
kcal/mol (cresol, the analog for tyrosine), with an average
of 3.14 kcal/mol. The largest error was 2.3 kcal/mol, for
4-methyl imadizole, the analog for histidine. The average
standard error per residue was 0.1 kcal/mol, indicating
that 20 structures per residue were sufficient to allow
statistical convergence.

Membrane Model

The dielectric heterogeneity of the membrane environ-
ment is modeled by varying the intrinsic moment of the
dipoles as a function of their position in the lattice, as
shown in Figure 2. Taking the membrane normal to be the
z axis, and the origin to be the center of the membrane, we
used the following function

m0,i 5
mwat 2 mhc

2 FtanhSuziu 2 wmem

wint
D 1 1G 1 mhc (5)

where zi is the position of dipole i, wmem 5 14 Å is half the
membrane width, and wint 5 3 Å is the width of the
interface. As shown in Figure 2, the polarity changes
smoothly from low values (mhc) in the membrane interior to
higher values in the water (mwat). The primary advantage
of this functional form is the ready control of membrane
and interface width. With these parameters, the spatial
dependence for the dipole moment roughly parallels the
experimentally derived water density in real mem-
branes.16

RESULTS

The purpose of this study is to demonstrate that a dipole
lattice membrane model can be used to describe the
energetics of small molecules and peptides interacting
with lipid bilayers, without incurring the computational
cost of all-atom molecular dynamics simulations. The
long-term goal of this work is to generate a model that
could be used to represent the membrane in predictions of
membrane protein structure. Accordingly, we will present

a series of test cases, to demonstrate the accuracy of the
model in a variety of circumstances.

Spherical Charges and Physical Dipoles

Perhaps the simplest test of an electrostatic model is its
treatment of a spherical charge. Figure 3A shows the free
energy for a spherical charge as a function of its position in
the membrane. Not surprisingly, the membrane lattice
model shows that it is enormously unfavorable (' 154
kcal/mol) to embed a bare charge in a membrane. The
largest contribution to this free energy change is electro-
static; however, there is a significant entropy loss (' 40
kcal/mol) upon transferring the charge into water. Physi-
cally, this finding indicates that the dipoles surrounding
the charge are strongly oriented by its electric field. As an
aside, it is interesting to note that continuum electrostat-
ics also predicts a significant entropic penalty for solvating
a charge in water, once the temperature dependence of the
dielectric constant is taken into account.44

Figure 3B shows the analogous curve for a 1 Debye
dipole, composed of two spheres of the same charge
magnitude and radius as in Figure 3A. Comparing the two
curves, it is obvious that forming a dipole greatly reduces
the penalty to move charges into the membrane. These
results, while unsurprising, indicate at the simplest level
that the model is performing as expected.

It is also important to note that, although both curves
have noticeable oscillations due to lattice artifacts in the
water region (' 6 1.5 kcal/mol), they are quite small
relative to the total free energy change. Given their small
size and large partial charges, these two systems should be
more vulnerable to lattice effects than most biomolecules,
indicating that this protocol can be used to calculate free
energy profiles without significant artifacts.

Fig. 2. Intrinsic dipole moment of a membrane lattice, as a function of
position in the membrane.

Fig. 3. Free energy profile for (A) a spherical charge and (B) a
physical dipole. The sphere has charge 1 1e and radius 2 Å. The dipole
is constructed from two spheres, with charge 6 1e, separation 1 Å, and
radius 2 Å, yielding a dipole moment of 1 D.
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Side Chain Analogs

The next step in validating the model is to calculate free
energy curves for various side chain analogs. Since the
model was parameterized to reproduce bulk hydrocarbon
to bulk water transfer energies for these analogs, it should
produce reasonable free energy differences for transfer
from the membrane interior to water. However, it is still
instructive to examine some of these curves, to understand
which free energy components are important in different
circumstances.

The free energy curves for each side chain analog were
calculated as follows: First, five structures were generated
for each analog, using the procedure described in the
Parameterization section. Next, a free energy curve was
calculated for each structure, using the general method
described in the Implementation Details section. A 6 3 6 3
16 lattice was used for these calculations, with offsets of
0.0 Å, 0.75 Å, 1.5 Å, 2.25 Å, 3.0 Å, and 3.75 Å in the z
direction, and 0 Å, 1.5 Å, and 3.0 Å in the x and y directions
(54 total calculations). The five free energy values were
then Boltzmann averaged at each location. The free energy
change between membrane interior and water and the
overall shape of the free energy curves do not depend
significantly on the lattice size.

Figures 4, 5, and 6 show the free energy curves for the
isoleucine, histidine, and tryptophan side chain analogs,
and the contributions of the different terms. Some basic
properties are immediately obvious. For example, Uelec

always favors the more polar environments. This finding is
as expected, since induced polarization will by definition
result in favorable interaction, and there are larger dipoles
in the more polar environments. Conversely, the entropic
term favors the less polar environment; a larger intrinsic
dipole feels a larger force in a given field, and as a result is

more strongly oriented and loses more entropy. The en-
tropic free energy change is always smaller in magnitude
than Uelec. Finally, the cavity term also favors the nonpo-
lar environments, because it is proportional to the square
of the magnitude of the dipoles displaced by the solute and
is, thus, larger in a polar environment.

These three analogs were chosen to illustrate the rela-
tive importance of the free energy terms for different
solutes. For example, the leucine analog (Fig. 4) has very
small partial charges in the AMBER potential; as a result,
its Uelec and entropy losses are small, regardless of the

Fig. 4. Free energy profile for butane, the analog for a isoleucine side
chain. Each point on the curves is a Boltzmann average of free energies
calculated for five different butane configurations. The free energy is
lowest in the membrane interior, primarily because Ucav opposes transfer
into water.

Fig. 5. Free energy profile for 4-methylimadizole, the analog for a
histidine side chain. Even though this curve was calculated using the
neutral form of the molecule, the free energy minimum is clearly in the
water, driven primarily by Uelec.

Fig. 6. Free energy profile for 3-methylindole, the analog for a
tryptophan side chain. The free energy minimum is in the membrane
interface (' 15 Å from the membrane center), in agreement with
experiment [17]. All free energy components make significant contribu-
tions.
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environment. However, it is a somewhat bulky molecule,
so there is a significant cavity term, which drives it from
the water into the membrane interior. The histidine
analog (Fig. 5), however, has a large electrostatic compo-
nent (Uelec

water 2 Uelec
hc ' 213.3 kcal/mol), which drives it

into the water region.
Perhaps the most interesting example is 3-methylin-

dole, the tryptophan side chain (Fig. 6). The free energy
minimum for this analog is about 14 Å from the membrane
center, in the membrane-water interface, as a result of
compensation between Uelec, Ucav, and the entropy change.
The Boltzmann averaged location for 3-methylindole is
13.4 Å from the membrane center; this result agrees with
recent NMR measurements showing that it partitions into
the head group region of lipid bilayers.17 Experimentally,
3-methylindole favors binding to POPC vesicles over bulk
water by about 8.6 kcal/mol, while in the present calcula-
tion the free energy difference is only 1.4 kcal/mol.49

Clearly, the present model significantly underestimates
the favorability of interfacial binding, but it must be
recalled that no effort was made to parameterize this
model to reproduce interfacial properties. Moreover, the
present model contains no representation of the lipid
headgroup dipoles, which would almost certainly further
stabilize interfacial binding. Finally, it is difficult to imag-
ine methods that do not represent the finite width of the
interfacial region producing this result.

WALP

The next model system we considered is the WAL-
peptide (WALP). The WALPs are short peptides (' 16–25
residues) containing alternating alanine and leucine resi-
dues, with two tryptophans at each terminus. They have
been used experimentally to investigate hydrophobic
matching in transmembrane helices and have been simu-
lated recently using molecular dynamics.50–53 The current
calculations use WALP-19 (19 residues total length) to
demonstrate that our model can correctly recognize a
stable transmembrane helix.

WALP-19 was constructed in an ideal a-helical conforma-
tion, with all side chains in their extended states. The
N-terminus was blocked with a formyl group, and the
C-terminus was blocked with ethanolamine, consistent
with the experimental work and simulations.52,53 The
structure was then minimized, to allow the side chains to
find more favorable orientations. For clarity, the “position”
of the WALP is defined to be the location of its center of
mass relative to the center of the membrane, and its tilt
angle is defined relative to the membrane normal. For
example, a position of z 5 0 and a tilt of 0° would be a
standard transmembrane configuration.

The free energy was calculated with WALP-19 in a
variety of positions and orientations. The first calculation
simply dragged WALP-19 through the bilayer, moving the
center of mass from 222 Å to 22 Å, at tilts of 0°, 10°, 20°,
and 90°. The transmembrane configurations (0°, 10°, and
20°, 0 , z , 5) had the lowest free energies, as expected
(data not shown). By contrast, the 90° configuration had
the least favorable free energies over the same range of

positions, roughly 30 kcal/mol higher than the transmem-
brane configurations (data not shown). This is reasonable,
because burying the entire helix in the membrane core
should be very unfavorable.

However, this simple calculation neglected variations of
free energy with rotations about the helical axis, which can
significantly effect the free energy when the helical tilt is
nonzero. Accordingly, we recalculated the free energies for
a subset of these configurations, considering all rotations
about the helical axis in 30° increments. The free energies
for the different rotations were then Boltzmann averaged,
at each z position. Similar calculations were performed for
pure hydrocarbon and water lattices, for comparison pur-
poses. The results are reasonable (see Fig. 7): WALP-19 is
most stable in a transmembrane orientation. The next
most favorable state is in pure water, approximately 2.1
kcal/mol less stable. The interfacial and pure hydrocarbon
states are far less favorable. These free energies corre-
spond to a situation where roughly 97% of the WALP is
found in the transmembrane state. In actuality, the model
most likely underestimates the preference for the trans-
membrane states, because, as described in the Side Chain
Analogs section, it underestimates the favorability of
placing the terminal tryptophans in the membrane inter-
face. Still, the model correctly identifies WALP as a
transmembrane helix.

Fig. 7. Free energy profile for WALP in different configurations. A: The
free energy for two transmembrane orientations, tilted 0° and 10° with
respect to the membrane normal and centered near the center of the
membrane. Each point is a Boltzmann average of free energies calculated
for rotations about the helical axis, at 30° intervals. For comparison
purposes, the free energy for the same helix in bulk water is also shown.
B: The free energy for a peripheral interfacial location, with the helix tilted
90° with respect to the membrane normal. The free energy for the helix in
bulk hydrocarbon is shown for comparison. The transmembrane orienta-
tions have the lowest overall free energy, when located 2 Å above the
membrane center.
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Alamethicin

The final test case is the channel-forming peptide ala-
methicin. Alamethicin is a 20 residue peptide, rich in
a-amino butyric acid, which at low concentrations and
transmembrane voltages binds to membrane interfaces in
a mostly helical conformation.18 The sequence is BPB-
ABAQBVBGLBPVBBEQP, where B is used to represent
a-amino butyric acid. The N-terminus is acetylated, while
the final residue is an a-amino alcohol. There has been a
great deal of experimental work on this peptide, including
determination of its structure in nonaqueous environ-
ment54 and measurements of its channel forming and
conductance properties.18 The structure and dynamics of
alamethicin in methanol has been investigated using
NMR and molecular dynamics by the Dempsey group.55,56

More recently, Tieleman et al. have published several
articles that report molecular dynamics simulations of this
peptide in a variety of environments.32,36,57

For these calculations, we used the coordinates from a
crystal structure solved in a methanol-acetonitrile solu-
tion.54 There are three alamethicin molecules in the unit
cell; therefore, we (arbitrarily) used the first one. It is
possible that this structure, solved in a homogeneous
environment, does not reflect the true structure of alamethi-
cin when bound to a membrane. However, molecular
dynamics simulations of alamethicin in a variety of envi-
ronments and experimental NMR work in methanol have
implied that this structure is probably not far from the
membrane-bound structure.32,36,55–57 There is a single
ionizable residue, Glu18; we performed calculations using
both the charged and uncharged forms.

First, we calculated the free energy for the neutral form
of alamethicin, as a function of distance from the center of
the membrane. Since alamethicin is expected to bind
interfacially, tilt angles are defined relative to the plane of
the membrane. Alamethicin was oriented parallel to the

plane of the membrane, with tilts of 0°, 10°, 20°, and 30°.
For each tilt and distance from the membrane center, we
performed solvation calculations for all rotations about the
long axis of the molecule, in 30° increments. As shown in
Figure 8, the free energy curves drop smoothly as alamethi-
cin moves from the membrane interior to the water.
Although these calculations correctly indicate that com-
pletely burying the molecule in the membrane interior is
unfavorable, they do not show a free energy minimum in
the interface, as one would expect for interfacial binding.
This is most likely due to the absence of favorable interac-
tions between lipid head groups and the peptide in our
model.

However, we can examine interfacial conformations to
see which are preferred, and why. Figures 9 and 10 focus
on the free energy for alamethicin when oriented parallel
to the membrane, 18 Å from the center of the bilayer. In
each figure, part A shows the free energy as a function of
rotation about the molecule’s long axis, while part B shows
the location, relative to the membrane center, of specific
parts of the molecule. Figure 9 shows the results of
calculations performed using the neutral form of alamethi-
cin, while Figure 10 shows analogous results obtained
using the charged form. It should be noted that the two
free energy curves cannot be directly compared, because
they use different reference states. Rather, the changes in
free energy upon rotation should be compared.

Perhaps unsurprisingly, the two free energy curves are
quite different: the location of the free energy minimum is
shifted by roughly 100°, and the range of free energy
values is radically different (8.7 kcal/mol vs. 54 kcal/mol).

Fig. 8. Free energy profile for the neutral form of alamethicin. Each
data point is a Boltzmann average of free energies calculated for rotations
about the long axis. Curves are shown for alamethicin tilted by 0°, 10°,
20°, and 30° with respect to the plane of the membrane.

Fig. 9. Free energy for the neutral form of alamethicin in the membrane-
water interface, 18 Å from the membrane center. A: The free energy as
the molecule is rotated about its long axis. B: The center of mass positions
for the side chain of Gln19 and the C-terminus. The free energy is lowest
when both Gln19 and the C-terminus are oriented away from the
membrane, even though this conformation partially buries Glu18.
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Part B of each figure explains the physical origin of these
effects. In Figure 9, the center of mass positions of the
Gln19 side chain and the C-terminus backbone are shown;
the low free energy states occur when these groups are
exposed to water. In this conformation, Glu18 is mostly
buried in the membrane, but the solvation penalty is not
particularly large because the neutral form of the side
chain is used. By contrast, in Figure 10 the conformational
free energy is dominated by the location of the charged
Glu18 side chain. If the real system were forced to bury the
glutamate, the molecule’s conformation would change, and
the glutamate would likely protonate, or bind a counterion
or water molecule. We calculate unphysically large barri-
ers to rotation (' 54 kcal/mol), because these relaxation
mechanisms are not currently represented in the model.

DISCUSSION
Comparison With Continuum Electrostatics
Calculations

Significant effort has been invested in modeling the electro-
statics of membrane-protein interactions. Most of the work
has used continuum electrostatic theory.7–9,11,58–60 The most
common approach has been to solve the Poisson-Boltzmann
equation numerically.61,9 In these calculations, the mem-
brane is represented as a low dielectric slab (typically e 5 2 or
4) surrounded by high dielectric region (e 5 80). In this sort of
model, the membrane-water interface is infinitesimally nar-
row; every point in space is either hydrocarbon-like, water-
like, or inside the molecule. This finding is quite different
from the situation in real membranes, where the interfacial
region accounts for up to half the width of the bilayer.16,19

However, it is difficult to know how to generalize a con-

tinuum model to represent a smoothly varying environment.
A dielectric constant is inherently a bulk property, so it is not
physically meaningful to talk about local variations on the
angstrom length scale. These limitations have not prevented
a number of calculations from successfully exploring the
behavior of transmembrane helices.7,8 Clearly, “dielectric
slab” models capture some membrane properties quite effec-
tively. However, it is difficult to use them to explore the
importance of the width and shape of the membrane-water
interface. This is in contrast to dipole lattice models; since the
intrinsic moment of a dipole is a local property, local varia-
tions of electrostatic properties can be explored in a physi-
cally consistent manner.

This finding does not mean that interfacial binding
cannot be explored using dielectric models. On the con-
trary, two recent papers by Murray et al. have used a
dielectric slab membrane model, combined with an explicit
all-atom representation for the lipid head groups, to
explore the behavior of charged peptides and myristolated
proteins with bilayers.59,60 However, these calculations
explore peripheral membrane binding; it is not clear how
they could be used to construct a full free energy profile,
because there is no mechanism by which the lipid head-
groups can reorient in response to a solute. These papers
demonstrate the importance of the lipid dipoles (and
charges) for peptide binding. They also highlight another
historical strength of Poisson-Boltzmann approaches,
namely their ability to capture the effects of ionic strength
on electrostatic interactions. Current dipole lattice models
do not represent salt effects, although work is ongoing in
our lab to introduce them, as described below.

Parameterization Rationale

A new solvent model almost always raises the issue of
parameterization. In the present case, our choice of param-
eterization method reflects both the anticipated applica-
tions of the model and our assessment of what physical
aspects are and are not captured by it. Because we intend
to use the model to describe the behavior of membrane
proteins, we parameterized the model to reproduce side
chain analog properties. As described in the Parameteriza-
tion section, the parameterization does not directly include
any membrane specific information. Rather, it makes the
assumption that the interior of the membrane is chemi-
cally similar to bulk hydrocarbon. This assumption is
supported by molecular dynamics simulations, which use
hydrocarbons to parameterize lipid chains,62,63 and by
Poisson-Boltzmann calculations, which typically use a
dielectric of 2 or 4, to match that of most bulk hydrocar-
bons.7,8

Furthermore, we chose to parameterize mhc and mwat

simultaneously to reproduce free energies of transfer
between hydrocarbon and water, although other choices
are certainly plausible. For example, mhc and mwat could be
estimated separately, using vacuum to liquid transfer.
However, this approach would certainly fail, if the present
model were used unchanged. Specifically, Ucav is not
sophisticated enough to appropriately capture all nonelec-
trostatic aspects of solvation. Experimental solvation free

Fig. 10. Free energy for the charged form of alamethicin in the
membrane-water interface, 18 Å from the membrane center. A: The free
energy as the molecule is rotated about its long axis. B: The center of
mass positions for the side chain of Glu18. The free energy is lowest when
both Glu18 is oriented away from the membrane.
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energies are in principle the sum of many terms, including
solute-solvent dispersion forces, solvent structure, solute
entropy, and long-range electrostatics. Assuming that the
Langevin dipole methodology correctly captures the electro-
static component of solvation, this leaves Ucav to capture
the other components. This is completely analogous to the
role of surface area terms in most Poisson-Boltzmann and
Generalized Born calculations.64–67

Virtually all of the compounds considered favor transfer
from vacuum to both water and hydrocarbon.47 This is a
phenomenon Ucav is fundamentally incapable of captur-
ing, since it is unfavorable by construction. It states that
displacing dipoles is unfavorable, and that displacing
strong dipoles is more unfavorable than displacing weak
dipoles. Its main purpose in our model is to ensure that
nonpolar compounds have lower free energies in less polar
environments. No purely electrostatic solvation model can
produce this behavior, because the solute partial charges
will always interact favorably with the solvent dipoles (or
dielectric), and will interact more favorably with stronger
dipoles (a higher dielectric).

At this point, we could have added a second nonelectro-
static term, to represent attractive solute-solvent interac-
tions. However, we chose instead to assume that these
forces are relatively nonspecific, and do not change signifi-
cantly with solvent composition. With this in mind, we
parameterized against hydrocarbon to water transfer data,
and used Ucav to represent the difference in cavitation cost
between different media.

Moreover, it would perhaps be desirable to use mem-
brane and membrane binding experiments to parameter-
ize the lattice membrane model. Unfortunately, there are
several problems with using membrane binding data
directly. First, there is the issue of transferability. Binding
properties of small molecules and peptides can depend
strongly on the salt concentrations and lipid compositions
used.60,68 This could greatly complicate parameterization,
especially if data had to be combined from multiple
sources. Second, a combination of thermodynamic and
structural information would be needed. For example, the
White group has performed binding measurements of a
series of peptides (WL-X-LL) to POPC vesicles, where all
20 amino acids were substituted for X.69 In principle, these
binding data could be used to calibrate a membrane model.
However, a pentapeptide has significant conformational
flexibility, and the membrane environment is heteroge-
neous. As a result, calculations would have to be per-
formed for a large number of solute conformations, in a
variety of positions and orientations. In essence, the entire
free energy curve would be needed for every set of parame-
ters, because the experiments represent an ensemble
average over all conformations. Finally, this kind of ap-
proach would couple the shape of the membrane with the
other parameters, making it more difficult to explore the
effects of varying membrane profile. By contrast, the
present model is quite flexible. For example, one could
construct a crude model for a micelle simply by making the
intrinsic dipole moment a function of distance from the
origin, instead of position along the membrane normal.

As was stated above, Ucav serves much the same purpose
in our calculations as the surface area terms do in Poisson-
Boltzmann or Generalized Born calculations.64,65,66,67 In-
deed, two recent papers by Efremov et al. attempted to
model the behavior of membrane proteins using nothing
but surface area terms.14,15 However, there are some
significant drawbacks to such an approach. For example,
surface area approaches alone do not correctly capture the
electrostatics of solvation.67 Moreover, surface area terms
do not readily capture environmental heterogeneity. Spe-
cifically, the model used by Efremov et al. treated the
membrane as a homogeneous hydrocarbon.14,15

Finally, our calculation of the entropy lost due to dipole
orientation is quite different from any found in the litera-
ture. This sort of term is not relevant in the context of
continuum electrostatics; it is only when dielectric re-
sponse is discretized into a finite number of dipoles that
one can reasonably speak of the solvent entropy. However,
even in the context of dipole lattice models, this effect has
not been widely discussed. A recent article by Florián and
Warshel addressed this issue.70 The authors used the
Langevin response function to estimate the average angle
between the external electric field and the permanent
dipole moment, then related the entropy to the conforma-
tional volume available to the dipole while restrained at
this angle. They found that this functional form overesti-
mated the entropy loss at small fields, and applied an
empirical correction. The functional form used in the
present work produces low-field entropy losses larger than
their modified entropy but lower than their uncorrected
functional form. At large fields, it is significantly larger
than either of their terms. Although it is not clear which
approach will perform better in practice, the present
method has the advantage that it is derived exactly from
the physics of a dipole in a field (see Appendix).

Planned Improvements

There are several areas where the model could be
improved, to represent membrane-protein interactions in
a more realistic way. The present article was intended to
demonstrate that lattices of dipoles could be used to
qualitatively describe the behavior of membrane proteins.
As such, the simplest plausible form of the method was
used.

The most obvious area for improvement is long-range
electrostatics. The present version of the model uses a
simple cutoff, which seems adequate for the present quali-
tative applications but is clearly not optimal for more
quantitative calculations. For example, it is likely that
such an approximation would adversely affect calculations
of the free energy of an ion in a channel. There are several
possible alternatives to the use of cutoffs. One possibility
would be to implement Ewald summation.71 This ap-
proach would have several advantages: it is a rigorously
correct way to handle a truly periodic system, and the
particle mesh Ewald method can be implemented very
efficiently.72 However, there is the possibility of artifacts
because of the enforced periodicity.73,74,75 Moreover, there
are physically interesting systems, such as a bilayer with
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an applied transmembrane potential, which are not fully
periodic. Although Ewald summation can be applied to
systems with only two dimensional periodicity, there is a
significant performance penalty.76 A second alternative
would be to use a reaction field approach.77,74,78 These
methods avoid both cutoff and periodicity artifacts, and
can also be implemented efficiently. However, it is not
clear how to implement them correctly in the context of a
dipole lattice model, especially one with heterogeneous
dielectric properties. Finally, a spherical boundary condi-
tion method could be applied.79 However, membrane sys-
tems do not possess spherical symmetry, requiring addi-
tional approximations.

Another limitation of the model is its treatment of
charged chemical groups. In the present calculations, all
amino acid residues and side chain analogs were assumed
be in their neutral forms, except as specifically noted. This
is clearly not physically correct for many realistic circum-
stances. However, this approximation is necessary for the
success of the present model; inclusion of charged groups
causes the model to drastically overestimate the favorabil-
ity of solvation by water, compared with the membrane, as
seen in Figure 10. Put another way, net charges have
enormous solvation penalties when buried in the mem-
brane (see Fig. 3). However, Figure 3 also shows that this
cost is dramatically reduced by the formation of a dipole,
roughly a factor of 6 in this specific calculation.

The primary lesson from this is that, if charged groups are
to be handled correctly, some provision for neutralization
must be made. There are several plausible ways to do this.
One approach would be to manually scale down the partial
charges used in the calculation. This is analogous to the
approach used by Sham et al., where charge-charge interac-
tions are screened by a large “dielectric constant”.80 Unfortu-
nately, the appropriate value for this scaling factor is not
immediately obvious, especially once the heterogeneity of the
membrane environment is taken into account.

Alternatively, one could simply consider both charge
states for each ionizable group. This would effectively
require a pKa calculation for all ionizable groups at all
positions and orientations in the membrane. While this, in
principle, could be done, the computational expense would
be very large when the molecule of interest has a signifi-
cant number of titratable groups. Several approximate
methods exist to deal with this combinatoric explo-
sion,80–85 but all of them are concerned for the most part
with pKas of residues in soluble proteins and would not
generalize readily to a membrane environment.

A third possibility would be to simply place a counterion
near each ionizable group. At first glance, this approach has a
certain appeal: the electrostatic solvation penalty would be
greatly diminished by the formation of a dipole, in a manner
consistent with the behavior of real proteins in salt solutions.
However, appropriate placement of the counterion would be
problematic; some form of sampling would be required,
which would most likely have to be repeated for a variety of
locations and orientations in the membrane.

The fourth, and perhaps most satisfying solution, would
be to attempt to capture salt effects implicitly in the

calculations. This is the approach taken in Poisson-
Boltzmann calculations.86,87 A similar approach should be
possible within the dipole lattice framework.

The model’s representation of the membrane itself could
also be improved. The present model captures the changes
in polarity of the membrane in a simple manner. A broad
membrane-water interface is represented, but treated
simply as a region with properties intermediate between
the membrane core and water. Real membranes are more
complex; zwitterionic lipid head groups have large dipole
moments, which are not freely reorientable.88 The result-
ing polarization of the head groups and interfacial water
leads to very large electric fields in the interfacial regions,
which can significantly effect biologically relevant proper-
ties such as ion permeation.89 Moreover, it has been shown
that peptide binding affinities are strongly dependent on
bilayer lipid composition.68

Fortunately, there seem to be several ways to capture
lipid head group effects in a dipole lattice membrane
model. The simplest approach would be to increase intrin-
sic dipole moments in the interface. However, this ap-
proach would not capture critical interfacial properties:
the orientation of the head group dipoles is largely deter-
mined by covalent interactions with the rest of the lipid,
not by bilayer-solute interactions. On the other hand,
there is little question that membrane permeants, espe-
cially ions, affect the local polarization profile of bilayers.
Hence, the dipoles would have to be partially reorientable.
This could be done by applying a harmonic restraint to
them while performing the iterative Langevin dipole calcu-
lation. Alternatively, the restraint could be incorporated
directly into the Langevin calculation, by adding a “re-
straining field” only to the interfacial dipoles, and using
the summed fields for the purposes of iteration. The
magnitude of the “restraining field” and the interfacial
dipoles would be chosen to reproduce the potential profile
for neat bilayers and the degree of polarization induced by
permeants. A series of long molecular dynamics simula-
tions are in progress in our group in an attempt to supply
this information.90,91

CONCLUSION

A dipole lattice membrane model has been developed. It
produces qualitatively correct results when applied to a
variety of molecules interacting with membranes, includ-
ing simple charges and dipoles, side chain analogs, and
helical peptides. The results indicate that this method can
complement existing computational methods, such as mo-
lecular dynamics and continuum electrostatics. Further
enhancements—such as representations of salt effects and
inclusion of the lipid head group dipoles—are planned, to
better capture the relevant physics of bilayers and their
interactions with membrane proteins.
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APPENDIX: DERIVATIONS

In this section, we will derive the partition function for a
permanent, freely reorientable dipole in a constant electric
field. The partition function will then be used to derive the
thermally averaged polarization of a dipole in a field, and
the orientational entropy it loses upon polarization.

Partition Function

We begin by writing the energy of a permanent dipole mW
in an electric field EW :

U 5 2mW z EW (A-1)

If we define m0 5 umW u and E0 5 uEW u, we can rewrite this as

U 5 2m0E0 cos u (A-2)

where u is the angle between mW and EW . The partition
function can then be written as the integral over all dipole
conformations:
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Q 5E e 2 U~EW ,mW!/kBTdmW

5E
0

2p E
0

p

em0E0 cosu/kBTsin u du df (A-3)

Because the integrand is independent of the azimuthal
angle f, integrating over f gives 2p. Changing variables to
set x 5 cos u, we get

Q 5 2p E
2 1

1

em0E0x/kBT dx

5
2pkBT
m0E0

~em0E0/kBT 2 e 2 m0E0/kBT!

5
4pkBT
m0E0

sinhSm0E0

kBT D (A-4)

This expression for the partition function is exact for a
permanent dipole with fixed location.43

Average Energy

The thermally averaged energy can be calculated from
the canonical partition function using the standard thermo-
dynamic relation43

^U& 5 kBT 2S] ln Q
]T D (A-5)

Using Eqs. A-4 and A-5, and defining y 5 m0E0/kBT, we
get

^U& 5 2m0E0Scoth y 2
1
yD

5 2mLE0 (A-6)

which is the Langevin expression, used in Eq.43,41,42

Entropy Loss due to Electric Field

For a system with canonical (NVT) partition function Q,
the entropy can be calculated as43

S 5 kB ln Q 1 kBTS] ln Q
]T D (A-7)

Combining this with Equation A-4, and again defining
y 5 m0E0/kBT, we can write

S 5 kB@ln~sinh y! 2 y coth y 2 ln y 1 ln 4p 1 1# (A-8)

Without loss of generality, we can define S0 5 ln 4p 1 1 as
our standard state, such that

lim
EW 3 0

DS~EW ! 5 0

lim
EW 3 0

DA~EW ! 5 0 (9)

Physically, this choice of S0 means we are using the dipole
in the absence of an applied field as the reference state.

Additivity of Dipole Entropies

The partition function for a lattice of N permanent
dipoles can be written

QN 5E dmW 1 . . . dmW N expFS O
i,j . i

Ndip

2 U~mW i, mW j!D/kBTG (A-10)

where dmW i denotes integration over all orientations of
dipole i, and U(mW i, mW j) is the interaction energy between the
dipole vectors mW i and mW j. Furthermore, we can calculate the
partition function for one of the dipoles in the lattice as

Qdip,i 5E ri~EW !dEW E exp~2U~EW , mW i!/kBT!dmW i (A-11)

where

ri~EW 0! 5E dmW 1 . . . dmW NSP
j

Ndip

rj~mW j!DdSEW 0 2 O
j

Ndip

EW jD (A-12)

In these equations, ri(EW ) is the probability distribution for
the electric field at dipole i, r(mW j) is the probability distribu-
tion for orientations of dipole j, EW (mW j) is the electric field for
mW j, U(EW , mW i) is interaction energy between the dipole and
electric field EW , and d(x) is the Dirac delta function. The
integration and product in Eq. A-12 exclude dipole i. Since
r(mW j) depends on the orientations of all other dipoles in the
lattice, this expression cannot be used to simplify QN.

However, in the present work, we calculate the electric
field due to the average polarization of the environment
and explicitly neglect fluctuations in the electric field.
Effectively, we impose the condition

ri~EW ! 5 d~EW 2 ^EW i&! (A-13)

where ^EW i& is the average electric field at dipole i, calcu-
lated using the iterative approach described in the Dipole
Lattice Solvation Energies section. Substituting Eq. A-13
into Eq. A-11 allows us to rewrite the partition function
without explicit dependence on the state of the other
dipoles. This, in turn, allows us to write

QN 5 P
i

Ndip

Qdip,i (A-14)

If we substitute Eq. A-14 into Eq. A-7, we get

S 5 k O
i

Ndip

ln Qdip,i 1 kBT O
i

Ndip ]

]T ln Qdip,i (A-15)

5 O
i

Ndip

Si (A-16)

In words, it is correct to write the entropy for a lattice of
dipoles as the sum of individual dipole entropies in the
context of a Langevin dipole model.
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