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Rhodopsin, the G protein-coupled receptor primarily responsible
for sensing light, is found in an environment rich in polyunsatu-
rated lipid chains and cholesterol. Biophysical experiments have
shown that lipid unsaturation and cholesterol both have signifi-
cant effects on rhodopsin’s stability and function; �-3 polyunsat-
urated chains, such as docosahexaenoic acid (DHA), destabilize
rhodopsin and enhance the kinetics of the photocycle, whereas
cholesterol has the opposite effect. Here, we use molecular dy-
namics simulations to investigate the possibility that polyunsatu-
rated chains modulate rhodopsin stability and kinetics via specific
direct interactions. By analyzing the results of 26 independent
100-ns simulations of dark-adapted rhodopsin, we found that DHA
routinely forms tight associations with the protein in a small
number of specific locations qualitatively different from the non-
specific interactions made by saturated chains and cholesterol.
Furthermore, the presence of tightly packed DHA molecules tends
to weaken the interhelical packing. These results are consistent
with recent NMR work, which proposes that rhodopsin binds DHA,
and they suggest a molecular rationale for DHA’s effects on
rhodopsin stability and kinetics.
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Rhodopsin, the primary light receptor in the visual system, is
an integral membrane protein belonging to the G protein-

coupled receptor (GPCR) superfamily. GPCRs, the largest
known protein superfamily, are critically important in a wide
variety of biological signaling processes (1). As a result, half of
all current drug targets belong to this family (2). Moreover,
rhodopsin is the only GPCR whose structure is known to atomic
resolution (3–7), making it important both in its own right and
as a template for understanding GPCR function in general (1, 8).

Rhodopsin is found in the rod outer-disk membranes in the
photoreceptor cells of vertebrates and invertebrates (9). These
membranes are highly enriched in �-3 polyunsaturated fatty
acids (10, 11); the cholesterol content is very high in newly
formed disk membranes and drops as they mature (12). The
presence of lipids with polyunsaturated chains destabilizes the
native state of rhodopsin and speeds the kinetics of the photo-
cycle (13, 14), whereas cholesterol stabilizes rhodopsin and slows
its kinetics (13–15). Although these experiments deepen our
understanding, the molecular-level details of how the membrane
environment modulates rhodopsin’s structure and function are
unknown.

Molecular dynamics simulations can be a powerful tool to
advance our understanding of protein–lipid biophysics. In recent
years, a number of groups have published simulations of rho-
dopsin in monounsaturated (16–19) and polyunsaturated mem-
branes (20, 21). Recent work from our group focused on the
interactions between polyunsaturated lipids, cholesterol, and
rhodopsin (20). In that work, we observed two docosahexaenoic
acid (DHA) chains forming contacts deep in the protein interior,
suggesting that DHA’s effects on rhodopsin could possibly be
explained by direct protein–lipid interactions, in addition to its
effects on bulk properties (22, 23). If DHA binding occurs
frequently and disrupts native contacts, it could readily explain

the decreased stability that occurs when rhodopsin is placed in
a DHA-rich environment. This destabilization could then ex-
plain the enhanced photocycle kinetics, because the photocycle
involves large-scale rigid body motions, which will break inter-
helical contacts (24, 25). However, in the original simulation,
there were only two such events to different regions on the
protein, making it difficult to assess their statistical significance.

In support of our previous results, we present a series of 26
independently constructed 100-ns simulations of rhodopsin [Pro-
tein Data Bank ID code 1U19 (3, 26)] in a membrane composed
of a 2:2:1 mixture of 1-stearoyl-2-docosahexaenoyl-phosphati-
dylethanolamine, 1-stearoyl-2-docosahexaenoyl-phosphatidyl-
choline, and cholesterol. The results indicate that (i) tight
DHA–rhodopsin association occurs fairly frequently on the
hundred nanosecond time scale; (ii) these associations tend to
take place at a small number of well defined regions on the
protein; (iii) the presence of tightly packed DHAs in a specific
region frequently leads to weakened interhelical residue–residue
packing in that region; and (iv) whereas cholesterol and satu-
rated chains sometimes pack tightly against the protein, their
binding appears nonspecific relative to DHA.

Results
Bulk Chain Packing. Our primary tool for quantitating the tightness
of packing between two molecules (e.g., a DHA chain and the
protein) is the packing score, which we define to be the sum over
all intermolecular atom pairs of 1�r6 (see Methods for details).
We computed probability distributions of the packing scores
of DHA, stearic acid (STEA), and cholesterol to characterize
their interactions with rhodopsin; the results are plotted in Fig.
1. The majority of lipids have very low packing scores, which is
to be expected because the packing score is a sum over a very
short-ranged function (1�r6). On a per-molecule basis, choles-
terol is most likely to pack well against the protein, followed by
DHA, then STEA. The lipid chains have smooth, relatively
featureless probability distributions, whereas cholesterol has a
pronounced minimum packing score of �0.15. The error bars,
defined as the standard deviation of the probability distributions
from the 26 independent trajectories, show that, although our
data clearly show that DHA is more likely to pack well relative
to STEA, this result may not reliably emerge from a single 100-ns
simulation. Indeed, in at least one of our simulations, the overall
packing of STEA was tighter than DHA. The point is even
clearer when we consider cholesterol; because there are far fewer
cholesterol molecules in the system, the error bars are signifi-
cantly larger, indicating that rhodopsin–cholesterol interactions
vary widely across independent simulations.

Fig. 1B shows the same data rescaled according to membrane
composition to produce the relative probability for the protein
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to make a given packing score with each membrane component.
Fig. 1 A shows the probability distribution for a given lipid,
whereas Fig. 1B shows the relative likelihood for the protein to
make a specific packing score with each lipid type, taking
composition into account. As a result, Fig. 1B shows that the
majority of tightly packed membrane components are lipid
chains rather than cholesterol.

By contrast, Fig. 2 answers a somewhat different question: Of
the chains that pack tightly, how many are DHA vs. STEA? Fig.
2 clearly shows that the majority of the tightly packed chains are
DHA, whereas STEA chains are more likely to interact weakly.
This finding is as expected, given previous simulations showing
that lipids with a saturated and polyunsaturated chain prefer-
entially orient the polyunsaturated chain toward rhodopsin (20,
27). These results are also consistent with recent NMR work
showing that lipids containing polyunsaturated chains preferen-
tially concentrate at the surface of rhodopsin (28).

Localization of Tightly Packed Lipids. Although component prefer-
ences are already apparent from the above probability distribu-
tions, it is interesting to ask whether there are specific regions on
the protein that are more likely to associate with different lipid
species. For example, recent NMR experiments have suggested
that rhodopsin contains a number of DHA binding sites (28).
Although the present simulations cannot directly comment on
the thermodynamics of lipid binding to rhodopsin, it is reason-
able to suggest that regions on the protein that tend to pack
tightly with lipid chains may correspond to binding sites.

Accordingly, we examined the degree to which lipid-chain bind-
ing is localized on the protein surface by computing the packing
score between a given chain and each residue in the protein; we
refer to the resulting 348-dimensional vector as the packing profile
(see Methods for details; see also Supporting Methods, which is
published as supporting information on the PNAS web site). We
computed packing profiles for the tightest-packed DHA, STEA,
and cholesterol chains and performed a cluster analysis on these
profiles (see Methods for details). We then examined the average
profiles for the resulting groups and identified the residues that
made significant protein–lipid contacts.

Tables 1–3 show the results of this analysis. Several interesting
points can be gleaned immediately from the data. First, there are
more well defined clusters for DHA than for STEA and cho-
lesterol. Moreover, �80% of the DHAs examined fell into a well
defined group, whereas only 32% of STEAs and 24% of cho-
lesterols fell in significant clusters. These data indicate that
DHA binding occurs in a relatively small number of well defined
ways and that STEA and cholesterol packing, although occa-
sionally just as tight, is largely nonspecific.

Second, there are some locations on the protein that appear
to generally favor tight lipid packing without specifically favoring
a particular lipid species. For example, DHA groups 5 and 6,
STEA group 2, and cholesterol group 2 are quite similar,
indicating that the region between helices 6 and 7 encourages
strong, well localized, lipid-independent packing. Similarly,
STEA group 1 and cholesterol group 3 contain the same strongly
interacting residues, which indicates a preference for more rigid,
saturated lipids. By contrast, the other DHA groups appear to
form regions specific to DHA.

Third, localized tight packing typically occurs between helices,
rather than along a single helix (Tables 1–3 and Fig. 3). The most
interesting exception is STEA group 3 and to some extent STEA

Fig. 1. Packing scores for membrane components. (A) The normalized
probability distributions for the packing scores of DHA, STEA, and cholesterol.
The error bars are the SD of the averages computed for the 26 independent
trajectories and, as such, represent the uncertainty for the probability com-
puted with a 100-ns simulation. Approximately 70% of the lipids have packing
scores between 0 and 0.1. (B) The relative probability for the protein to make
a given packing score with each membrane component, computed by taking
the data from A and rescaling according to the relative abundance of DHA,
STEA, and cholesterol molecules in the system.

Fig. 2. Fraction of lipid chains with a given score, summed over all lipids in
all trajectories. Scores of �0.6 are merged into a single bin to improve
statistics.

Table 1. Groups of residues which preferentially interact with
tight-packing DHA chains

Group Frequency Residues Helices

1 10 266, 269, 270, 273, 274, 277, 278 6
2 14 36, 39, 286, 290 1, 7
3 9 129, 130, 133, 148, 152, 155, 156, 159 3, 4
4 4 45, 48, 92, 95, 96, 99 1, 2
5 9 256, 301, 304, 305, 308, 309 6, 7
6 4 50, 300, 304, 307, 308, 314 1, 7
7 7 133, 136, 137, 142, 143, 146, 148 3, 4
8 5 252, 255, 256, 259 6
Ungrouped 16
Total 78 43

The residues listed are those that have packing score S � 0.05 in the
normalized average profile for their group. Frequency indicates the number
of lipids that interacted with this group of residues, and the helices shown
indicate which secondary structure elements contain those residues. The totals
indicate the total number of lipids considered and the number of unique
residues selected in the groups.

Table 2. Groups of residues which preferentially interact with
tight-packing STEA chains

Group Frequency Residues Helices

1 4 108, 111, 112, 115, 172 3, 4
2 5 256, 300, 301, 304, 305, 308, 309 6, 7
3 4 217, 220, 221, 224, 225, 228 5
4 4 205, 208, 209, 213, 273 4, 5
Ungrouped 36
Total 53 23

See Table 1 for details.

Grossfield et al. PNAS � March 28, 2006 � vol. 103 � no. 13 � 4889

BI
O

PH
YS

IC
S



group 4; the residues in question line the outside of helix 5, away
from any other contacts with the protein. Note that tight packing
is not restricted to the highlighted regions; these are merely the
regions where tight packing was reproducible and well charac-
terized. In fact, the single tightest binding event for DHA, similar
to one of the two binding events in our original simulation (20),
occurred only once in the present ensemble of 26 simulations
and, thus, is not represented in Fig. 3. Rather, the present group
analysis assumes that the simulations are sufficiently represen-
tative of the equilibrium ensemble that the most important
binding motifs occur frequently.

Fig. 4 is an attempt to answer a slightly different question: Do
specific regions of the protein interact preferentially with one
membrane component, or is tight packing determined solely by
protein geometry, independent of local membrane composition?
For example, in the parts of the protein where the groups from
Tables 1–3 overlap, is there one particular membrane compo-
nent that is most likely to bind? To answer these questions, we
computed the packing score for each residue in the protein
against all DHAs, STEAs, and cholesterols in all systems. We
then selected the residues that had a statistically significant
preference for one component. The results were projected onto
the rhodopsin structure (Fig. 4). Fig. 4 confirms that the
overlapping groups between helices 6 and 7 are largely nonspe-
cific; most of the residues in that region have no significant

preference for DHA, STEA, or cholesterol. Overall, many more
residues have a preference for DHA (51 residues) than STEA
(16 residues) or cholesterol (5 residues), including all of residues
in the protein core that have a significant preference. It is also
interesting to note that the residues that prefer cholesterol are
located in a narrow belt near the center of the membrane.

Discussion
There has been a strong interest in the biological importance of
polyunsaturated lipids for many years. DHA in particular has
been implicated in a variety of conditions, including neurological
and developmental problems (29), heart disease (30), autoim-
mune disorders (31–33), and psychological problems (34–36).
Membranes rich in DHA have low-order parameters, higher
compressibility, and other interesting physical characteristics
(22, 37). An interesting question is whether these bulk properties
are solely responsible for DHA’s biological effects (37, 38) or
whether direct protein–lipid interactions are involved (20, 28).

The present work is an attempt to connect these ideas via
molecular dynamics simulations. Using a large number of long,
independently constructed trajectories, we found evidence for
regions on rhodopsin that tightly associate with lipids chains,
especially DHA (see Fig. 3). Although we cannot assess the
thermodynamic importance of these observations in any quan-
titative way, it is suggestive that rhodopsin packs with DHA in
a far more localized manner than with STEA or cholesterol. In
other words, tight DHA–protein packing largely occurs in a
small number of regions in well characterized ways, whereas
STEA and cholesterol packing is relatively nonspecific, with a
much larger number of weakly populated associations. This
qualitative difference is consistent with experimental evidence
for DHA binding but not STEA binding (28).

The identification of several tightly associating regions specific
for DHA suggests a previously uncharacterized mechanism for
DHA’s effects on rhodopsin stability and kinetics: DHA’s
penetration of the protein core may displace native interactions,
destabilizing the native state and facilitating the transition to the
active form. Fig. 3 and Table 1 clearly show that DHA chains
tend to pack tightly in well defined regions, primarily grooves
between helices. Because the stability of the native state rests in
part on interhelix sidechain–sidechain interactions, the sugges-

Fig. 3. Groups of residues that tightly associate with membrane compo-
nents, projected onto the 1U19 crystal structure. Upper and Lower are views
with helices 6 and 4 in front, respectively. (Left) The residues that interact with
DHA are highlighted. (Center) The residues that interact with STEA are high-
lighted. (Right) The residues that interact with cholesterol are highlighted.
Different colors indicate the distinct groups defined in Tables 1–3. The ‘‘bind-
ing sites’’ for different membrane components overlap in places, most notably
between helices 6 and 7 (upper left part of the protein) (Upper) and between
helices 3 and 4 (bottom center of the protein) (Lower).

Table 3. Groups of residues that preferentially interact with
tight-packing cholesterol molecules

Group Frequency Residues Helices

1 4 53, 56, 57, 60, 320, 321 1, 8
2 5 252, 255, 256, 259, 260, 305, 308, 309 6, 7
3 6 108, 111, 112, 115, 172 3, 4
Ungrouped 47
Total 62 19

See Table 1 for details.

Fig. 4. Groups of residues that preferentially interact with DHA, STEA, or
cholesterol projected onto the 1U19 crystal structure. The average packing
score between each residue and each membrane component was computed
across all simulations. Residues are colored blue if the DHA score is significantly
higher than that for STEA and cholesterol. Residues for which the STEA score
is significantly higher are shown in red. Magenta residues have significantly
higher cholesterol scores. Green residues have either no significant preference
or very weak overall signals. In all cases, significance was determined by
comparing the difference between the two values with the sum of the
standard errors in those values.
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tion that DHA intercalation into these regions must be disrup-
tive seems straightforward. Although we cannot directly assess
the effect of DHA binding on protein thermodynamic stability,
we can compare the packing quality for residues in the binding
groups in simulations during which there was a binding event to
the same quantity in simulations during which no binding
occurred. Specifically, we considered the following residue pairs:
from group 2 (Table 2), N36–I286 and M39–I290; from group
3, V130–G156 and V130–F159; from group 4, F45–L95 and
I48–T92; from group 5, R252–M309 and I256–I305; from group
6, L50–V300; and from group 7, Y136–P142, V137–F146, I133–
F148, and V137–M143. We computed the packing scores for
each of these residue pairs from all trajectories and separated the
ones that had a binding event at their respective groups from the
rest. Thus, when examining residues F45–L95 and I48–T92 from
group 4, there were four trajectories that contributed to the
‘‘bound’’ category and 22 that contributed to the ‘‘unbound’’
category. We then computed the probability distributions for all
bound and unbound residue pairs. Fig. 5 shows the results, which
clearly indicate that the presence of bound lipids weakens
interhelical packing. Fig. 5A shows that the probability of a high
residue–residue packing score is significantly reduced when
DHAs are present in the packing groups. The means for the
bound and unbound distributions (0.0079 and 0.0096, respec-
tively) differ significantly; the probability that this difference
would arise randomly is �10�5 according to the Student t test,
even assuming that the data has a coherence time of 10 ns, which
is very conservative. The difference is more dramatically shown
in Fig. 5B, which shows the ratio of the probability distribution
functions: upon binding, the probability of very low packing
scores is enriched by �25%, whereas the probability of tighter
packing is significantly depleted, indicating that some native
contacts are being broken and that the interhelical residues are
generally more loosely packed.

However, the presence of tight-packing DHAs did not
weaken all of the interhelical residue packings. DHA binding
at groups 2, 4, and 6 (from Table 1) is correlated with weaker
interhelical packing, whereas binding at groups 3 and 5 seemed
to tighten packing. For group 7, the behavior is more com-
plicated; the packing between Y136–P142 and V137–F146 got
weaker, and the packing between I133–F148 and V137–M143
got stronger. Examining the structure of rhodopsin shows that
these residues are in helices 3 and 4 and their connecting loop
and that these changes in packing indicate that there are

significantly different loop structures in the lipid-binding
trajectories compared with the unbound trajectories.

Cholesterol has an ordering effect on bulk membranes (16),
and experiments (15, 39) and simulations (20) have suggested
that its stabilization of rhodopsin is due to these bulk effects,
rather than any direct interaction. The present simulations are
consistent with this interpretation. Although the tightest pack-
ings in our simulations were between rhodopsin and cholesterol,
they are relatively rare despite the cholesterol-rich membrane
composition (Fig. 1B). Moreover, the binding events do not
appear to favor specific residues significantly (Table 3 and Fig.
3), with �75% of the tightly packed cholesterols not falling into
any well defined cluster.

Previous simulation work was able to discern an overall
preference for DHA to congregate at the protein surface (20,
21). However, those works focused solely on the radial distri-
bution of DHA, effectively averaging out axial variations. This
approach was necessary, because the residence time for lipids at
the protein surface was comparable with the simulation time
scales, limiting statistical confidence. Indeed, the same would be
true for any one of the simulations in the present work; the
significance of the binding motifs emerges only from considering
the ensemble of simulations. In any given 100-ns trajectory, only
a small fraction of the packing sites are populated, and it is only
by assessing the totality of the simulations that a pattern can be
observed. Thus, although the individual simulations equilibrate
rapidly [the states sampled are appropriate for the NVE (con-
stant number, volume, and energy) ensemble at 311 K], 100 ns
is not long enough for sampling to become ergodic. Examination
of the time series for the packing score between individual lipids
and the protein indicate that tight packing events tend to be
long-lived on the simulation time scale, lasting many tens of
nanoseconds. The presence of three distinct molecular species in
the bilayer further complicates matters, because 100 ns is not
long enough for large-scale lateral reorganization of the mem-
brane, although we did see numerous examples of lipids entering
and leaving the first ‘‘solvation shell’’ around the protein.
Although in principle the same sampling could be achieved with
a single long calculation, indirect evidence from our simulations
suggests that such a simulation would have to be extremely long
and, therefore, far less efficient than the present approach.

One caveat is, in a sense, the inverse of the problem we seek
to solve: We don’t know what, if any, lateral organization might
be present in our system. Our membrane construction protocol
explicitly assumes that both lipid types should be randomly distrib-
uted; if there is a preference for one headgroup to segregate at the
protein surface or at particular locations on the surface, our
simulations would not necessarily capture that phenomenon.
The same is true to an even greater extent when considering the
cholesterols, because there are fewer of them in the system. The
10-ns axial correlation time suggested by previous simulations
indicates that there is sufficient time for local exploration (27),
but if the global distribution differs significantly from random
distribution, the present simulations would likely underestimate
it. The trends that emerge here should therefore be regarded as
lower bounds. Still, the present approach represents a significant
step forward from previous attempts, because it is very difficult to
assess convergence from a single trajectory, no matter how long.

Conclusions
We present the results of molecular dynamics simulations of
rhodopsin in a complex membrane environment rich in the �-3
fatty acid DHA. By performing a large number of lengthy,
independently constructed simulations, we were able to identify
a number of well localized regions on rhodopsin, where DHA
repeatedly packs tightly. We suggest that these packing regions
may be related to recent experimental evidence for the existence
of several specific rhodopsin–DHA binding sites (28). Because

Fig. 5. Comparison of residue–residue packing scores from trajectories with
and without lipids bound to those sites. We computed normalized histograms
for the packing scores for interhelix residue pairs found in the groups from
Table 1 (see text for details). (A) The probability distributions. (B) Ratio of the
probability distributions.
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the putative binding sites primarily involve grooves between
helices and binding weakens interhelical packing, their existence
suggests a role for direct lipid–protein interaction in DHA’s
modulation of rhodopsin stability, kinetics, and function. By
contrast, STEA and cholesterol packing appeared largely non-
specific. Characterization of specific DHA-binding motifs was
made possible only by combining a large number of lengthy,
independent simulations; the independent starting conforma-
tions were necessary to explore distinct membrane configura-
tions, whereas the 100-ns trajectories allowed sufficient time for
local sampling.

Methods
Simulation Details. We performed 26 independent, 100-ns simula-
tions of rhodopsin in an explicit membrane and water environment
embedded in a periodic box. The lipid composition was chosen to
be similar to that found biologically and in many model–membrane
experiments (12–14, 40, 41). Long-range electrostatics were mod-
eled by using the Ewald method, and real-space electrostatics and
van der Waal’s interactions were smoothly truncated at 10 Å. The
simulation was run in the NVE ensemble with an average temper-
ature of 311 K. The CHARMM27 force field was used to represent
the protein (42), and the recently refined CHARMM saturated
chain (43), polyunsaturated chain (44), and cholesterol parameters
(27) were used to describe the lipids. Construction and equilibration
were performed with CHARMM 2.7 (45), and production calculations
were performed with BLUE MATTER (46), a molecular dynamics
package specially written to take advantage of the Blue Gene�L
hardware (47). Production trajectories were run on 512, 1,024, or
2,048 Blue Gene nodes, yielding 4, 6, or 9 ns per day, respectively.
In each case, the initial coordinates for the lipid and cholesterol
were regenerated such that the simulations are truly independent.
Each simulation was run for at least 100 ns, with the first 20 ns of
each simulation excluded from analysis as equilibration. Total
simulation time was more than 2.6 �s. For further details, see
Supporting Methods.

Membrane Construction. The membrane construction protocol was
based on the strategy used by Woolf and Roux (48). We built the
protein and internal water molecules by using the highest-resolution
crystal structure for rhodopsin [Protein Data Bank ID code 1U19
(3, 26)]. Lipid and cholesterol conformations were chosen from a
library generated by a 20-ns molecular dynamics simulation of a
neat bilayer with the same composition as the one used here. Initial
headgroup placements were chosen by relaxing the locations of
spheres randomly placed at the appropriate distance from the
membrane centers, and lipid coordinates were gradually relaxed in
a manner that guaranteed minimal clashes with the protein and
cholesterol. For further details, see Supporting Methods.

Packing Scores and Profiles. The packing score for a pair of
molecules (e.g., rhodopsin and a DHA chain) was computed as
a sum over atom pairs:

S � �
i

Protein �
j

Lipid 1
r ij

6 . [1]

This quantity is analogous to the attractive component of the
Lennard–Jones potential and is related to the rate of magneti-
zation transfer measured in recent NMR experiments (49). All
atoms of both molecules were used.

The packing profile for each individual lipid chain was created by
computing the average packing score between the chain and each
individual residue in the protein, resulting in a vector with 348
components. Each profile was then normalized, removing infor-
mation about the overall magnitude of the packing score (see
Supporting Methods for further details). We perform this normal-
ization to remove information about the duration of each packing
event; because such packings are relatively long-lived on the
simulation time scale, our measured lifetimes are largely deter-
mined by when the packing formed, which is not a physically
significant quantity. Similarity between the profiles for two differ-
ent lipids was estimated by using the dot product between the
normalized profiles. We established the significance of different dot
product values by using a form of Monte-Carlo bootstrapping,
determining that the dot product distribution for random vectors is
described by a Gaussian, with mean of 0.638 and SD of 0.034.

To further quantitate the different modes of tight packing, we
clustered the packing profiles. Specifically, we selected the
individual lipid components (DHA, STEA, and cholesterol) that
had the highest maximum packing scores with the protein and
compared their packing profiles. Any two profiles with a dot
product of �0.75 (more than three SDs above the randomly
expected value) were defined to be part of the same group.
Groups with three or fewer members were not analyzed further,
nor were groups for which the average pairwise dot product was
not significantly greater than what would be expected for a
random collection of unit vectors. As a result, the clustering
procedure produced groups which were well defined and distinct.
The details of the process for selecting tightly packed chains and
performing the clustering are contained in Supporting Methods.

To cleanly define the residues in the resulting groups, we
examined the normalized average group profiles and selected those
residues that had a renormalized score of 0.05 or greater to best
represent the residues involved in the group’s binding events.
However, none of the conclusions are particularly sensitive to this
choice of threshold value. Although we do occasionally refer to
these groups of residues as ‘‘binding sites,’’ we do not mean to imply
that our data show these packings to be thermodynamically stable.
Rather, we intend to indicate that these clusters cover the regions
most frequently and reproducibly involved in the tightest associa-
tions in our simulations, which might be related to the binding sites
suggested by recent NMR work (28).

We that the members of the Blue Matter team (B. Fitch, R. Germain,
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National Science Foundation for support through Award MCB-0091508
and the Dreyfus Foundation for support under the Henry Dreyfus
Teacher–Scholar Program.
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