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Abstract The quantitative assessment of uncertainty and sampling quality is essential in molecu-
lar simulation. Many systems of interest are highly complex, often at the edge of current computa-

tional capabilities. Modelers must therefore analyze and communicate statistical uncertainties so

that “consumers” of simulated data understand its significance and limitations. This article covers

key analyses appropriate for trajectory data generated by conventional simulation methods such as

molecular dynamics and (single Markov chain) Monte Carlo. It also provides guidance for analyzing

some ‘enhanced’ sampling approaches. We do not discuss systematic errors arising, e.g., from
inaccuracy in the chosen model or force field.
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1 Introduction: Scope and definitions
1.1 Scope
Simulating molecular systems that are interesting by today’s

standards, whether for biomolecular research, materials sci-

ence, or a related field, is a challenging task. However, com-

putational scientists are often dazzled by the system-specific

issues that emerge from such problems and fail to recognize

that even “simple” simulations (e.g., alkanes) require signifi-

cant care [1]. In particular, questions often arise regarding

the best way to adequately sample the desired phase-space

or estimate uncertainties. And while such questions are not

unique to molecular modeling, their importance cannot be

overstated: the usefulness of a simulated result ultimately

hinges on being able to confidently and accurately report un-

certainties along with any given prediction [2]. In the context
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of techniques such as molecular dynamics (MD) and Monte

Carlo (MC), these considerations are especially important,

given that even large-scale modern computing resources do

not guarantee adequate sampling.

This article therefore aims to provide best-practices for

reporting simulated observables, assessing confidence in

simulations, and deriving uncertainty estimates (more col-

loquially, “error bars”) based on a variety of statistical tech-

niques applicable to physics-based sampling methods and

their associated “enhanced” counterparts. As a general rule,

we advocate a tiered approach to computational modeling. In

particular, workflows should begin with back-of-the-envelope

calculations to determine the feasibility of a given computa-

tion, followed by the actual simulation(s). Semi-quantitative

checks can then be used to check for adequate sampling

and assess the quality of data. Only once these steps have

been performed should one actually construct estimates of

observables and uncertainties. In this way, modelers avoid

unnecessary waste by continuously gauging the likelihood

that subsequent steps will be successful. Moreover, this ap-

proach can help to identify seemingly reasonable data that

may have little value for prediction and/or be the result of a

poorly run simulation.

It is worth emphasizing that in the last few years, many

works have developed and advocated for uncertainty quantifi-

cation (UQ) methods not traditionally used in the MD and MC

communities. In some cases, these methods buck trends that

have become longstanding conventions, e.g., the practice of

only using uncorrelated data to construct statistical estimates.

One goal of this manuscript is therefore to advocate newer

UQ methods when these are demonstrably better. Along

these lines, we wish to remind the reader that better results

are not only obtained from faster computers, but also by us-

ing data more thoughtfully. It is also important to appreciate

that debate continues even among professional statisticians

on what analyses to perform and report [3].

The reader should be aware that there is not a “one-size-

fits-all” approach to UQ. Ultimately, we take the perspective

that uncertainty quantification in its broadest sense aims to

provide actionable information for making decisions, e.g., in

an industrial research and development setting or in planning

future academic studies. A simulation protocol and subse-

quent analysis of its results should therefore take into account

the intended audience and/or decisions to be made on the

basis of the computation. In some cases, quick-and-dirty

workflows can indeed be useful if the goal is to only provide

order-of-magnitude estimates of some quantity. We also note

that uncertainties can often be estimated through a variety

of techniques, and there may not be consensus as to which,

if any, are best. Thus, a critical component of any UQ analysis
is communication, e.g., of the assumptions being made, the UQ

tools used, and the way that results are interpreted. Educated
decisions can only be made through an understanding of

both the process of estimating uncertainty and its numerical

results.

While UQ is a central topic of this manuscript, our scope

is limited to issues associated with sampling and related un-

certainty estimates. We do not address systematic errors

arising from inaccuracy of force-fields, the underlying model,

or parametric choices such as the choice of a thermostat time-

constant. See, for example, Refs. [4–7] for methods that ad-

dress such problems. Similarly, we did not address bugs and

other implementation errors, which will generally introduce

systematic errors. Finally, we do not consider model-form

error and related issues that arise when comparing simulated

predictions with experiment. Rather, we take the raw trajec-

tory data at face value, assuming that it is a valid description

of the system of interest.
1

1.2 Key Definitions
In order to make the discussion that follows more precise,

we first define key terms used in subsequent sections. We

caution that while many of these concepts are familiar, our

terminology follows the International Vocabulary of Metrology
(VIM) [8], a standard that sometimes differs from the con-

ventional or common language of engineering statistics. For

additional information about or clarification of the statistical

meaning of terms in the VIM, we suggest that readers con-

sult the Guide to the expression of uncertainty in measurement
(GUM) [9].

For clarity, we highlight a few differences between conven-

tional terms and the VIM usage employed throughout this

article. Readers should study the term “standard uncertainty”

which is sometimes estimated by (in common parlance) the

“standard error of the mean”; however, the VIM term for the

latter is the “experimental standard deviation of the mean.”

In cases of lexical ambiguity, the reader should assume that

we hold to the definition of terms as given in the VIM.

Note also that the glossary is presented in a logical, rather

than alphabetical order. We strongly encourage reading it

through in its entirety because of the structure and potentially

unfamiliar terminology. Importantly, we also recommend

reading the discussion that immediately follows, since this

(i) explains the rationale for adopting the chosen language,

(ii) discusses the limited relationship between statistics and

uncertainty quantification, and (iii) thereby clarifies our per-

spective on best-practices.

1
In more technical UQ language, we restrict our scope to verification of

simulation results, as opposed to validation. Readersmay consult https://github.
com/MobleyLab/basic_simulation_training and https://github.com/shirtsgroup/

software-physical-validation regarding foundations of molecular simulation

and validation of simulation results, respectively.
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1.2.1 Glossary of Statistical Terms

• Randomquantity: A quantity whose numerical value is
inherently unknowable or unpredictable. Observations

or measurements taken from a molecular simulation

are treated as random quantities
2
.

• True value: The value of a quantity that is consistent
with its definition and is the objective of an idealized

measurement or simulation. The adjective “true” is of-

ten dropped when reference to the definition is clear by

context [8, 9].

• Expectation value: If P(x) is the probability density of
a continuous random quantity x, then the expectation
value is given by the formula

〈x〉 =
∫
dx P(x)x. (1)

In the case that x adopts discrete values x1, x2, ... with
corresponding fractional (absolute) probabilities P(xj),
we instead write

〈x〉 =∑
j
xjP(xj). (2)

Note that P(x) is dimensionless when x is discrete as
shown above. When x is continuous, as in Eq. 1, P(x)
must have units reciprocal to x, e.g., if x has units of kg,
then P(x) has units of 1/kg. Furthermore, whether x is
discrete or continuous, P(x) should always be normal-
ized to ensure a total probability of unity.

• Variance:3 Taking P(x) as defined previously, the vari-
ance of a random quantity is a measure of how much it

can fluctuate, given by the formula

σ2x =
∫
dx P(x) (x – 〈x〉)2 . (3)

If x assume discrete values, the corresponding definition
becomes

σ2x =
∑
j
P(xj) (xj – 〈x〉)2 . (4)

• Standard Deviation: The positive square root of the
variance, denoted σx. This is a measure of the width of
the distribution of x, and is, in itself, not a measure of
the statistical uncertainty; see below.

2
Most molecular simulations (even those using pseudo-random number

generators) are deterministic in that the sequence of visited states is generated

by a fixed and known algorithm. As such, the simulation output is never truly

random. In practice, however, the chaotic nature of the simulation allows for

application of the principles of statistics to the analysis of simulation observa-

tions. Thus, observations/measurements taken at points along the simulation

may be treated as random quantities. See Ref. [4] for more discussion of this

rather deep point.

3
The true probability density P(x) is inherently unknowable, given that we

can only collect a finite amount of data about x. As such, we can only estimate
its properties (e.g., mean and variance) and approximate its analytical form

(e.g. see the end of Ref. [10]).

• Arithmetic mean: An estimate of the (true) expectation
value of a random quantity, given by the formula

x̄ = 1n
n∑
j=1
xj (5)

where xj is an experimental or simulated realization of
the random variable and n is the number of samples.
Remark: This quantity is often called the “samplemean.”
Note that a proper realization of a random variable

(with no systematic bias) will yield values distributed

according to P(x), so x̄ → 〈x〉 as n→∞.
• Standard Uncertainty: Uncertainty in a result (e.g., es-
timation of a true value) as expressed in terms of a

standard deviation.
4

• Experimental standard deviation:5 An estimate of
the (true) standard deviation of a random variable, given

by the formula
6

s (x) =
√∑nj=1

(xj – x̄)2
n – 1 (6)

The square of the experimental standard deviation, de-

noted s2 (x), is the experimental variance.
Remark: This quantity is often called the “sample stan-
dard deviation.” Additionally, s (x) is a statistical property
of the specific set of observations {x1, x2, ..., xn}, not of
the random quantity x in general. Thus, s (x) is some-
times written as s (xj) for emphasis of this property.

• Linearly uncorrelated observables: If quantities x
and y have mean values 〈x〉 and 〈y〉, then x and y are
linearly uncorrelated if

〈
(x – 〈x〉) (y – 〈y〉)〉 = 0 (7)

Remark: The concepts of linear uncorrelation and inde-
pendence of random variables are often conflated. Two

variables can be correlated even if Eq. 7 is 0, e.g. when a

scatter plot of the two variables forms a circle. Truly in-

dependent variables have zero linear and higher-order

correlations, such that the joint density of two random

variables x and y can be decomposed as P(x, y) = P(x)P(y),
4
The definition of standard uncertainty does not specify how to calculate the

standard deviation. This choice ultimately rests with the modeler and should

be dictated by the details of the uncertainty relevant to the problem at hand.

Intuitively, this quantity should reflect the degree to which an estimate would

vary if recomputed using new and independent data.

5
The term “experimental” can refer to simulated data, since these are the

results of numerical experiments.

6
The factor of n – 1 (as opposed to n) appearing in the denominator of Eq. 6

is needed to ensure that the variance estimate is unbiased, meaning that on
average s2 (x) is equal to the true variance. Physically, we can interpret the –1
as accounting for the fact that one degree-of-freedom (e.g., piece of data) is

lost via the appearance of x̄ in the definition of s (x). Equivalently, it accounts for
the fact that the arithmetic mean is linearly correlated with each xj (cf. Linearly
Uncorrelated Observables).
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which is a stronger condition than linear uncorrelation.

Empirically testing for independence, however, is not

practical, nor is it necessary for any of the estimates

discussed in this work.

• Experimental standard deviation of the mean: An
estimate of the standard deviation of the distribution of

the arithmetic mean, given by the formula

s (x̄) = s (x)√n , (8)

where the realizations of xj are assumed to be linearly
uncorrelated.

7

Remark: This quantity is often called the “standard er-
ror.”

• Raw data: The numbers that the computer program
directly generates as it proceeds through a sequence

of states. For example, a MC simulation generates a

sequence of configurations, for which there are asso-

ciated properties such as the instantaneous pressure,

temperature, volume, etc.

• Derived observables: Quantities derived from “non-

trivial” analyses of raw data, e.g., properties that may

not be computed for a single configuration such as free

energies.

• Correlation time: In time-series data of a random

quantity x(t) (e.g., a physical property from a MC or MD
trajectory; the sequence of trials moves is treated as a

“time series” in MC), the correlation time (denoted here

as τ ) is the longest separation time ∆t over which x(t)
and x(t+∆t) remain (linearly) correlated.8 (See Eq. 10 for
mathematical definition and Sec. 7.3.1 for discussion.)

Thus, the correlation time can be interpreted as the

time over which the system retains memory of its

previous states. Such correlations are often stationary,
meaning that τ is independent of t. Roughly speaking,
the total simulation time divided by the longest correla-

tion time yields an order-of-magnitude estimate of the

number of (linearly) uncorrelated samples generated by
a simulation. See Sec. 7.3.1. Note that the correlation

time can be infinite.

• Two-sided confidence interval: An interval, typically
stated as 〈x〉 = x̄ ± U, which is expected to contain the
possible values attributed to 〈x〉 given the experimental
measurements of xj and a certain level of confidence,

7
The true variance of the mean goes as σ2x /n, which assumes exact knowl-

edge of σx . Thus, the factor of n (as opposed to n – 1) appearing in Eq. (8) is
motivated by the observation that 〈s (x)2〉 = σ2x , i.e., the experimental standard
deviation provides an unbiased estimate of the experimental standard devia-

tion of the mean. It is important and somewhat counterintuitive, however, that

Eq. (8) actually underestimates the true standard deviation of the mean, which
is a trivial consequence of Jensen’s inequality.

8
Generally speaking, MC and MD trajectories generate new configurations

from preceding ones.

denoted p. The size of the confidence interval, known as
the expanded uncertainty, is defined by U = ks (x̄) where
k is the coverage factor [8].9 The level of confidence p is
typically given as a percentage, e.g., 95 %. Hence, the

confidence interval is typically described as “the p %
confidence interval” for a given value of p.
• Coverage Factor: The factor k which is multiplied by
the experimental standard deviation of the mean s (x̄) to
obtain the expanded uncertainty, typically in the range

of 2 to 3. In general, k is selected based on the chosen
level of confidence p and probability distribution that
characterizes the measurement result xj. For Gaussian-
distributed data, k is determined from the t-distribution,
based on the level of confidence p and the number
of measurements in the experimental sample.

10
See

Sec. 7.5 for further discussion on the selection of k and
the resultant computation of confidence intervals.

1.2.2 Terminology and its relation to our broader

perspective on uncertainty

As surveyed by Refs. [8, 9], the discussion that originally moti-

vatedmany of theses definitions appears rather philosophical.

However, there are practical issues at stake related to both

the content of the definitions as well as the need to adopt

their usage. We review such issues now.

At the heart of the matter is the observation that any un-

certainty analysis, no matter how thorough, is inherently sub-

jective. This can can be understood, for example, by noting

that the arithmetic mean is itself actually a random quantity

that only approximates the true expectation value.
11
Because

its variation relative to the true value depends on the num-

ber of samples (notwithstanding a little bad luck), one could

therefore argue that a better mean is always obtained by

collecting more data. We cannot collect data indefinitely, how-

ever, so the quality of an estimate necessarily depends on a
choice of when to stop. Ultimately, this discussion forces us
to acknowledge that the role of any uncertainty estimate is to
facilitate decision making, and, as such, the thoroughness of
any analysis should be tailored to the decision at hand.

Practically speaking, the definitions as put forth by the

VIM attempt to reflect this perspective while also capturing

ideas that the statistics community have long found useful.

For example, the concept of an “experimental standard devia-

tion of the mean” is nothing more than the “standard error of

9
This conceptual description of a confidence interval is only applicable

when certain conditions are met, including the important stipulation that all

uncertainty contained in s (x̄) is determined only by statistical evaluation of the
random experimental measurements of xj [9].
10
For discussion regarding the selection of k for non-Gaussian-distributed

data, consult Annex G of Ref. [9].

11
Notably, the same observation applies to the experimental standard devia-

tion and the corresponding experimental standard deviation of the mean.
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the mean.” However, the adjective “experimental” explicitly

acknowledges that the estimate is in fact obtained from obser-

vation (and not analytical results), while the use of “deviation”

in place of “error” emphasizes that the latter is unknowable.

Similar considerations apply to the term “experimental stan-

dard deviation,” which is more commonly referred to as the

“sample standard deviation.”

It is important to note that subjectivity as identified in

this discussion does not arise just from questions of sam-

pling. In particular, methods such as parametric bootstrap

and correlation analyses (discussed below) invoke modeling

assumptions that can never be objectively tested. Moreover,

experts may not even agree on how to compute a derived

quantity, which leads to ambiguity in what we mean by a “true

value” [11]. That we should consider these issues carefully

and assess their impacts on any prediction is reflected in the

definition of the “standard uncertainty,” which does not ac-

tually tell us how to compute uncertainties. Rather it is the
task of the modeler to consider the impacts of their assumptions
and choices when formulating a final uncertainty estimate. To
this end, the language we use plays a large role in how well these
considerations are communicated.
As a final thought, we reiterate that the goal of an un-

certainty analysis is not necessarily to perform the most

thorough computations possible, but rather to communicate

clearly and openly what has been assumed and done. We

cannot predict every use-case for data that we generate, nor

can we anticipate the decisions that will be made on the basis

of our predictions. The importance of clearly communicating

therefore rests on the fact that in doing so, we allow others

to decide for themselves whether our analysis is sufficient or

requires revisiting. To this end, consistent and precise use of

language plays an important, if understated role.

2 Best Practices Checklist
Our overall recommendations are summarized in the check-

list presented on the following page, which should facilitate

avoiding common errors and adhering to good practices.

3 Pre-simulation “sanity checks” and
planning tips

Sampling a molecular system that is complex enough to be

“interesting” in modern science is often extremely challenging,

and similar difficulties apply to studies of “simple” systems

[1]. Therefore, a small amount of effort spent planning a

study can pay offmany times over. In the worst case, a poorly

planned study can lead to weeks or months of simulations

and analyses that yield questionable results.

With this in mind, one of the objectives of this document

is to provide a set of benchmark practices against which re-

viewers and other scientists can judge the quality of a given

work. If you read this guide in its entirety before performing a
simulation, you will have a much better sense of what consti-

tutes (in our minds) a thoughtful simulation study. Thus, we

strongly advise that readers review and understand the con-

cepts presented here, as well as in related reviews [9, 12, 13]

In a generic sense, the overall goal of a computational

study is to be able to draw statistically significant conclusions

regarding a particular phenomenon. To this end, “good statis-

tics” usually follow from repeated observations of a quantity-

of-interest. While such information can be obtained in a num-

ber of ways, time-series data are a natural output of many

simulations and is therefore a commonly used to achieve

the desired sampling.
12

It is important to recognize that

time-series data usually displays a certain amount of auto-

correlation in the sense that the numerical values of nearby

points in the series tend to cluster close to one another. Intu-

ition dictates that correlated data does not reveal fully “new”

information about the quantity-of-interest, and so we require

uncorrelated samples to achieve meaningful sampling [14].
13

Thus, it is critical to ask: what are the pertinent timescales
of the system? Unfortunately, this question must be answered
individually for each system. You will want to study the ex-

perimental and computational literature for your particular

system, although we warn that a published prior simulation

of a given length does not in itself validate a new simulation

of a similar or slightly increased length. In the end, your data

should be examined using statistical tools, such as the au-

tocorrelation analysis described in Secs. 4.1 and 7.3.1. Be

warned that a system may possess states (regions of config-

uration space) that, although important, are never visited in
a given simulation set because of insufficient computational

time [12] and, furthermore, this type of error will not be dis-

covered through the analyses presented below. Finally, note

that "system" here does not necessarily refer to a complete

simulation (e.g., a biological system with protein, solvent, ions,

etc); it can also refer to some subset of the simulation for

which data are desired. For example, if one is only interested

in the dynamics of a binding site in a protein, it probably is

not necessary to observe the unfolding and refolding of that

protein as well.

One general strategy that will allow you to understand the

relevant timescales in a system is to perform several repeats

of the same simulation protocol. As described below, repeats

can be used to assess variance in any observable within the
time you have run your simulation. When performing repeat

12
Note that the “time-series” descriptor here can also refer to a sequence of

states in the Markov chain of a Monte Carlo simulation.

13
This intuition is, strictly speaking, misguided in that anti-correlated sam-

ples actually increases our knowledge of a given random quantity relative to
decorrelated samples. See, for example, the discussion in Ref. [14].
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QUANTIFYING UNCERTAINTY AND SAMPLING QUALITY INMOLECULAR SIMULATION
� Plan your study carefully by starting with pre-simulation sanity checks. There is no guarantee that any method,
enhanced or otherwise, can sample the system of interest. See Sec. 3

� Consult best-practices papers on simulation background and planning/setup. See: https://github.com/MobleyLab/

basic_simulation_training

� Estimate whether system timescales are known experimentally and feasible computationally based on published

literature. If timescales are too long for straight-ahead MD, investigate enhanced-sampling methods for systems of

similar complexity. The same concept applies to MC, based on the number of MC trial moves instead of actual time.

� Read up on sampling assessment and uncertainty estimation, from this article or another source (e.g., Ref. [12]).

Understanding uncertainty will help in the planning of a simulation (e.g., ensure collection of sufficient data).
� Consider multiple runs instead of a single simulation. Diverse starting structures enable a check on sampling for

equilibrium ensembles, which should not depend on the starting structure. Multiple runs may be especially useful in

assessing uncertainty for enhanced sampling methods.

� Check and validate your code/method via a simple benchmark system. See: https://github.com/shirtsgroup/

software-physical-validation

� Do not “cherry-pick” data that provides hoped-for outcomes. This practice is ethically questionable and, at a
minimum, can significantly bias your conclusions. Use all of the available data unless there is an objective and

compelling reason not to, e.g., the simulation setup was incorrect or a sampling metric indicated that the simulation

was not equilibrated. When used, sampling metrics should be applied uniformly to all simulations to further avoid bias.
� Perform simple, semiquantitative checks which can rule out (but not ensure) sufficient sampling. It is easier to
diagnose insufficient sampling than to demonstrate good sampling. See Sec. 4.

� Critically examine the time series of a number of observables, both those of interest and others. Is each time series
fluctuating about an average value or drifting overall? What states are expected and what are seen? Are there a

significant number of transitions between states?

� If multiple runs have been performed, compare results (e.g., time series, distributions, etc.) from different simulations.

� An individual trajectory can be divided into two parts and analyzed as if two simulations had been run.

� Remove an “equilibration” (a.k.a. “burn-in”, or transient) portion of a single MD or MC trajectory and perform
analyses only on the remaining “production” portion of trajectory. An initial configuration is unlikely to be representative

of the desired ensemble and the system must be allowed to relax so that low probability states are not overrepresented

in collected data. See Sec. 5.

� Consider computing a quantitativemeasure of global sampling, i.e., attempt to estimate the number of statistically
independent samples in a trajectory. Sequential configurations are highly correlated because one configuration is

generated from the preceding one, and estimating the degree of correlation is essential to understanding overall

simulation quality. See Secs. 6 and 7.3.1.

� Quantify uncertainty in specific observables of interest using confidence intervals. The statistical uncertainty in,
e.g., the arithmetic mean of an observable decreases as more independent samples are obtained and can be much
smaller than the experimental standard deviation of that observable. See Sec. 7.

� Use special care when designing uncertainty analyses for simulations with enhanced sampling methods. The
use of multiple, potentially correlated trajectories within a single enhanced-sampling simulation can invalidate the

assumptions underpinning traditional analyses of uncertainty. See Sec. 8.

� Report a complete description of your uncertainty quantification procedure, detailed enough to permit repro-
duction of reported findings. Describe the meaning and basis of uncertainties given in figures or tables in the
captions for those items, e.g., "Error bars represent 95% confidence intervals based on bootstrapping results from the

independent simulations." Provide expanded discussion of or references for the uncertainty analysis if the method

is non-trivial. We strongly urge publication of unprocessed simulation data (measurements/observations) and post-

processing scripts, perhaps using public data or software repositories, so that readers can exactly reproduce the

processed results and uncertainty estimates. The non-uniformity of uncertainty quantification procedures in the

modern literature underscores the value of clarity and transparency going forward.
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Figure 1. Schematic illustration of a free energy landscape domi-
nated by a slow process. The timescales associated with a system

will often reflect “activated” (energy-climbing) processes, although

they could also indicate diffusion times for traversing a rough land-

scape with many small barriers. In the figure, the largest barrier is

associated with the slowest timescale tslow, and the danger for con-
ventional MD simulations is that the total length of the simulation

may be inadequate to generate the barrier crossing.

simulations, it is generally advised to use different starting

states which are as diverse as possible; then, differences

among the runs can be an indicator of inadequate sampling

of the equilibrium distribution. Alternatively, performing mul-

tiple runs from the same starting state will yield behavior

particular to that starting state; information about (potential)

equilibrium is obtained only if the runs are long enough.

A toy model illustrates some of these timescale issues and

their effects on sampling. Consider the “double well” free

energy landscape shown in Fig. 1, and note that the slowest

timescale is associated with crossing the largest barrier. Gen-

erally, you should expect that the value of any observable
(e.g., x itself or another coordinate not shown or a function
of those coordinates) will depend on which of the two dom-

inant basins the system occupies. In turn, the equilibrium

average of an observable will require sampling the two basins

according to their equilibrium populations. In order to di-

rectly sample these basins, however, the length of a trajectory

will have to be orders of magnitude greater than the slowest

timescale, i.e., the largest barrier should be crossed multiple

times. Only in this way can the relative populations of states

be inferred from time spent in each state. Stated differently,

the equilibrium populations follow from the transition rates

[15–17] which can be estimated from multiple events. For

completeness, we note that there is no guarantee that sam-

pling of a given system will be limited by a dominant barrier.

Instead, a system could exhibit a generally rough landscape

with many pathways between states of interest. Nevertheless,

the same cautions apply.

What should be done if a determination is made that a

system’s timescales are too long for direct simulation? The

two main options would be to consider a more simplified

(“coarse-grained”) model [18, 19] or an enhanced sampling

technique (see Sec. 8). Modelers should keep in mind that

enhanced sampling methods are not foolproof but have their

own limitations which should be considered carefully.

Lastly, whatever simulation protocol you pursue, be sure

to use a well-validated piece of software [https://github.com/

shirtsgroup/software-physical-validation]. If you are using

your own code, check it against independent simulations on

other software for a system that can be readily sampled, e.g.,

Ref. [20].

4 Qualitative and semiquantitative
checks that can rule out good
sampling

It is difficult to establish with certainty that good sampling has

been achieved, but it is not difficult to rule out high-quality
sampling. Here we elaborate on some relatively simple tests

that can quickly bring out inadequacies in sampling.

Generally speaking, analysis routines that extract informa-

tion from raw simulated data are often formulated on the

basis of physical intuition about how that data should behave.

Before proceeding to quantitative data analysis and uncer-

tainty quantification, it is therefore useful to assess the extent

to which data conforms to these expectations and the require-

ments imposed by either the modeler or the analysis routines.

Such tasks help reduce subjectivity of predictions and offer

insight into when a simulation protocol should be revisited

to better understand its meaningfulness [11]. Unfortunately,

general recipes for assessing data quality are impossible to

formulate, owing to the range of physical quantities of inter-

est to modelers. Nonetheless, several example procedures

will help clarify the matter.

4.1 Zeroth-order system-wide tests
The simplest test for poor sampling is lack of equilibration:

if the system is still noticeably relaxing from its starting con-

formation, statistical sampling has not even begun, and thus

by definition is poor. As a result, the very first test should be

to verify that the basic equilibration has occurred. To check

for this, one should inspect the time series for a number of

simple scalar values, such as potential energy, system size

(and area, if you are simulating a membrane or other system

where one dimension is distinct from the others), temper-

ature (if you are simulating in the NVE ensemble), and/or

density (if simulating in the isothermal-isobaric ensemble).

Simple visual inspection is often sufficient to determine

that the simulation is systematically changing, although more

sophisticated methods have been proposed (see Sec. 5). If
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any value appears to be systematically changing, then the
system may not be equilibrated and further investigation is

warranted. See, for example, the time trace in Fig. 2. After the

rapid rise, the value shows slower changes; however, it does

not fluctuate repeatedly about an average value, implying it

has not been well-sampled.

4.2 Tests based on configurational distance
measures (e.g., RMSD)

Because a system with N particles has a 3N dimensional
configuration-space (the full set of x, y, z coordinates), it is
generally difficult to assess the extent to which the simulation

has adequately explored these degrees-of-freedom. Thus,

modelers often project out all but a few degrees of freedom,

e.g., monitoring a “distance” in configuration space as de-

scribed below or keeping track of only certain dihedral angles.

In this lower dimensional subspace, it can be easier to track

transitions between states and monitor similarity between

configurations. However, the interpretation of such analyses

requires care.

By employing a configuration-space “distance”, several

useful qualitative checks can be performed. Such a distance is

commonly employed in biomolecular simulations (e.g., RMSD,

defined below) but analogous measures could be employed

for other types of systems. A configuration-space distance is

a simple scalar function quantifying the similarity between

two molecular configurations and can be used in a variety of

ways to probe sampling.

To understand the basic idea behind using a distance to

assess sampling, consider first a one-dimensional system, as

sketched in Fig. 1. If we perform a simulation and monitor

the x coordinate alone, without knowing anything about the
landscape, we can get an idea of the sampling performed

simply by monitoring x as a function of time. If we see numer-
ous transitions among apparent metastable regions (where

the x values fluctuates rapidly about a local mean), we can
conclude that sampling likely was adequate for the configura-
tion space seen in the simulation. An important caveat is that
we know nothing about states that were never visited. On

the other hand, if the time trace of x changes primarily in
just one direction or exhibits few transitions among apparent

metastable regions, we can conclude that sampling was poor

– again without knowledge of the energy landscape.

The same basic procedures (and more) can be fol-

lowed once we precisely define a configurational distance

between two configurations. A typical example is the

root-mean-square deviation,

RMSD(r, s) =
√√√√ 1N

N∑
i=1
|ri – si|2 , (9)
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Figure 2. RMSD as a measure of convergence. The upper panel
shows the α-carbon RMSD of the protein rhodopsin from its starting

structure as a function of time. The lower panel shows the all-to-all

RMSD map computed from the same trajectory. Color scale is the

RMSD, in Å. Data from Ref. [21].
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where ri and si are the Cartesian coordinates of atom i in
two distinct configurations r and s which have been opti-
mally aligned [22], so that the RMSD is the minimum “dis-

tance” between the configurations. It is not uncommon to

use only a subset of the atoms (e.g., protein backbone, only

secondary structure elements) when computing the RMSD,

in order to filter out the higher-frequency fluctuations. An-

other configuration-space metric is the dihedral angle dis-

tance which sums over all distances for pairs of selected

angles. Note that configurational distances generally suffer
from the degeneracy problem: the fact that many different

configurations can be the same distance from any given refer-

ence. This is analogous to the increasing number of points in

three-dimensional space with increasing radial distance from

a reference point, except much worse because of the dimen-

sionality. For an exploration of expected RMSD distributions

for biomolecular systems see the work of Pitera [23].

Some qualitative tools for assessing global sampling

based on RMSD were reviewed in prior work [12]. The

classic time-series plot of RMSD with respect to a crystal

or other single reference structure (Fig. 2) can immediately

indicate whether the structure is still systematically changing.

Although this kind of plot was historically used as a sampling

test, it should really be considered as another equilibration

test like those discussed above. Moreover, it is not even a

particularly good test of equilibration, because the degen-

eracy of RMSD means you cannot tell if the simulation is

exploring new states that are equidistant from the chosen

reference. The upper panel of Fig. 2 shows a typical curve of

this sort, taken from a simulation of the G protein-coupled

receptor rhodopsin [21]; the curve increases rapidly over the

few nanoseconds and then roughly plateaus. It is difficult to

assign meaning to the other features on the curve.

A better RMSD-based convergencemeasure is the all-to-all

RMSD plot; taking the RMSD of each snapshot in the trajectory

with respect to all others allows you to use RMSD for what

it does best, identifying very similar structures. The lower

panel of Fig. 2 shows an example of this kind of plot, applied

to the same rhodopsin trajectory. By definition, all such plots

have values of zero along the diagonal, and occupation of

a given state shows up as a block of similar RMSD along

the diagonal; in this case, there are 2 main states, with one

transition occurring roughly 800 ns into the trajectory. Off

diagonal “peaks” (regions of low RMSD between structures

sampled far apart in time) indicate that the system is revisiting

previously sampled states, a necessary condition for good

statistics. In this case, the initial state is never sampled after

the first transition as seen from the lack of low RMSD values

following ∼800 ns with respect to configurations prior to that
point; however, there are a number of small transitions within

the second state based on low RMSD values occurring among

configurations following ∼800 ns.

4.3 Analyzing the qualitative behavior of
data

In many cases, analysis of simulated outputs relies on deter-

mining or extracting information from a regime in which data

are expected to behave a certain way. For example, we might

anticipate that a given dataset should have linear regimes or

more generically look like a convex function. However, typical

sources of fluctuations in simulations often introduce noise

that can distort the character of data and thereby render

such analyses difficult or even impossible to approach objec-

tively. It is therefore often useful to systematically assess the

extent to which raw data conforms to our expectations and

requirements.

In the context of materials science, simulations of yield-

strain εy (loosely speaking, the deformation at which a mate-
rial fails) provide one such example. In particular, intuition

and experiments tells us that upon deforming a material by

a fraction 1 + ε, it should recover its original dimensions if

ε ≤ εy and have a residual strain εr = ε – εy if ε ≥ εy [24].
Thus, residual-strain data should exhibit bilinear behavior,

with slopes indicating whether the material is in the pre- or

post-yield regime.

In experimental data, these regimes are generally distinct

and connected by a sharp transition. In simulated data, how-

ever, the transition in εr around yield is generally smooth
and not piece-wise linear, owing to the timescale limitations

of MD. Thus, it is useful to perform analyses that can objec-

tively identify the asymptotic regimes without need for input

from a modeler. One way to achieve this is by fitting residual

strain to a hyperbola. In doing so, the proximity of data to

the asymptotes illustrates the extent to which simulated εr
conforms to the expectation that εr = 0 when ε < εy . See Fig. 3
and Refs. [11, 24] for more examples and discussion.

While extending this approach to other types of simula-

tions invariably depends on the problem at hand, we recog-

nize a few generic principles. In particular, it is sometimes

possible to test the quality of data by fitting it to global (not
piece-wise or local!) functions that exhibit characteristics we

desire of the former. By testing the goodness of this fit, we

can assess the extent to which the data captures the entire

structure of the fit-function and therefore conforms to ex-

pectations. We note that this task can even be done in the

absence of a known fit function, given only more generic prop-

erties such as convexity. See, for example, the discussion in

Ref. [14].

9 of 24

https://doi.org/10.33011/livecoms.1.1.5067Living J. Comp. Mol. Sci. 2019, 1(1), 5067

https://doi.org/10.33011/livecoms.1.1.5067


A LiveCoMS Best Practices Guide

Figure 3. Residual strain εr as a function of applied strain ε. Blue ×
denote simulated data, whereas the smooth curve is a hyperbola

fit to the data. The green lines are asymptotes; their intersection

can be taken as an estimate of εy . Bounds on yield are computed by
the synthetic data method discussed in Sec. 7.6. From, “Estimation
and uncertainty quantification of yield via strain recovery simulations,”
P. Patrone, CAMX 2016 Conference Proceedings. Reprinted courtesy of
the National Institute of Standards and Technology, U.S. Department of
Commerce. Not copyrightable in the United States.

Figure 4. Combined clustering between two independent trajectories
as a measure of convergence. The X axis is the population of a cluster

from trajectory 1, while the Y axis is the population of that cluster

from trajectory 2. Cluster populations are show after 20, 100, and

800 ns of sampling. The simulations used to generate the data used

in this plot are described in Ref. [25].

4.4 Tests based on independent simulations
and related ideas

When estimating any statistical property, multiple measure-

ments are required to characterize the underlying model with

high confidence. Consider, for example, the probability that

an unbiased coin will land heads-up as estimated in terms

of the relative fraction coin-flips that give this result. This

fraction approximated in terms of a single flip (measurement)

will always yield a grossly incorrect probability, since only one

outcome (heads or tails) can ever be represented by this pro-

cedure. However, as more flips (measurements) are made,

the relative fraction of outcomes will converge to the correct

probability, i.e., the former represents and increasingly good

estimate of the latter.

In an analogous way, we often use “convergence” in the

context of simulations to describe the extent to which an esti-

mator (e.g., an arithmetic mean) approaches some true value

(i.e., the corresponding expectation of an observable) with

increasing amounts of data. In many cases, however, the true

value is not known a priori, so that we cannot be sure what
value a given estimator should be approaching. In such cases,

it is common to use the overlap of independent estimates

and confidence intervals as a proxy for convergence because

the associated clustering suggests a shared if unknown mean.

Conversely, lack of such “convergence” is a strong indication

that sampling is poor.

There are two approaches to obtaining independent mea-

surements. Arguably the best is to have multiple indepen-

dent simulations, each with different initial conditions. Ideally

these conditions should be chosen so as to span the space

to be sampled, which provides confidence that simulations

are not being trapped in a local minimum. Consider, for ex-

ample, the task of sampling the φ and ψ torsions of alanine

dipeptide. To accomplish this, one could initialize these an-

gles in the alpha-helical conformation and then run a second

simulation initialized in the polyproline II conformation. It is

important to note, however, that the starting conditions only

need to be varied enough so that the desired space is sam-

pled. For example, if the goal is to sample protein folding and

unfolding, there should be some simulations started from

the folded conformation and some from the unfolded, but if

it is not important to consider protein folding, initial unfolded

conformations may not be needed.

However, the “many short trajectories” strategy has a num-

ber of limitations that must be also be considered. First, as a

rule one does not know the underlying ensemble in advance

(else, we might not need to do the simulation!), which compli-

cates the generation of a diverse set of initial states. When

simulating large biomolecules (e.g. proteins or nucleic acids),

“diverse” initial structures are often constructed using the crys-
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tal or NMR structure coupled with randomized placement of

surrounding water molecules, ions, etc. If the true ensemble

contains protein states with significant structural variations, it

is possible that no number of short simulations would actually

capture transitions, particularly if the transitions themselves

are slow. In that case, each individual trajectory must be of

significant duration in order to have any meaning relevant to

the underlying ensemble. The minimum duration needed to

achieve significance is highly system dependent, and estimat-

ing it in advance requires an understanding of the relevant

timescales in the system and what properties are to be cal-

culated. Second, one must equilibrate each new trajectory,

which can appreciably increase the computational cost of run-

ning many short trajectories, depending on the quality of the

initial states.

One can also try to estimate statistical uncertainties di-

rectly from a single simulation by dividing it into two or more

subsets (“blocks”). However this can at times be problematic

because it can be more difficult to tell if the system is biased

by shared initial conditions (e.g., trapped in a local energy

minimum). Those employing this approach should take extra

care to assess their results (see Sec. 7.3.2).

Autocorrelation analyses applied to trajectory blocks can

be used to better understand the extent to which a time se-

ries represents an equilibrated system. In particular, systems

at steady state (which includes equilibrium) by definition have

statistical properties that are time-invariant. Thus, correla-

tions between a single observable at different times depend

only on the relative spacing (or “lag”) between the time steps.

That is, the autocorrelation function of observable x, denoted
C, has the stationarity property

C(xk , xk+j) ≡
(xkj – x)(xk+j – x)

s (x)2 ⇒ Cj (10)

where Cj is independent of the time step k. With this in mind,
one can partition a given time series into continuous blocks,

compute the autocorrelation for a collection of lags j, and
compare between blocks. Estimates of Cj that are indepen-
dent of the block suggest an equilibrated (or at least a steady-

state) system, whereas significant changes in the autocorre-

lation may indicate an unequilibrated system. Importantly,

this technique can help to distinguish long-timescale trends

in apparently equilibrated data.

Combined Clustering

Cluster analysis is a means by which data points are grouped

together based on a similarity (or distance) metric. For ex-

ample, cluster analysis can be used to identify the major

conformational substates of a biomolecule from molecular

dynamics trajectory data using coordinate RMSD as a dis-

Figure 5. The equilibration and production segments of a trajectory.
“Equilibration” over the time tequil represents transient behavior while
the initial configuration relaxes toward configurations more repre-

sentative of the equilibrium ensemble. Readers are encouraged to

select tequil in a systematic way based on published literature. If you
find strong sensitivity of “production” data to the choice of tequil, this
suggests additional sampling is required.

tance metric. For an in-depth discussion of cluster analysis as

applied to biomolecular simulations data, see Ref. [26].

One useful technique for evaluating convergence of struc-

ture populations is so-called "combined clustering". Briefly,

in this method two or more independent trajectories are

combined into a single trajectory (or a single trajectory is di-

vided into two or more parts), on which cluster analysis is

performed. Clusters represents groupings of configurations

for which intra-group similarity is higher than inter-group

similarity [27].

The resulting clusters are then split according to the tra-

jectory (or part of the trajectory) they originally came from.

If simulations are converged then each part will have similar

populations for any given cluster. Indications of poor conver-

gence are large deviations in cluster populations, or clusters

that show up in one part but not others. Figure 4 shows

results from combined clustering of two independent trajec-

tories as a plot of cluster population fraction from the first

trajectory compared to the second. If the two independent

trajectories are perfectly converged then all points should

fall on the X=Y line. As simulation time increases the cluster

populations from the independent trajectories are in better

agreement, which indicates the simulations are converging.

For another example of performing combined cluster analysis

see Ref. [28].

5 Determining and removing an
equilibration or ‘burn-in’ portion of a
trajectory

The “equilibration” or “burn-in” time tequil represents the initial
part of a single continuous trajectory (whether from MD or

MC) that is discarded for purposes of data analysis of equilib-
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rium or steady-state properties; the remaining trajectory data
are often called “production” data. See Fig. 5. Discarding

data may seem counterproductive, but there is no reason to

expect that the initial configurations of a trajectory will be

important in the ensemble ultimately obtained. Including

early-time data, therefore, can systematically bias results.
To illustrate these points, consider the process of relaxing

an initial, crystalline configuration of a protein to its amor-

phous counterpart in an aqueous environment. While the

initial structure might seem to be intrinsically valuable, re-

member that configurations representative of the crystal

structure may never appear in an aqueous system. As a re-

sult, the initial structure may be subject to unphysical forces

and/or transitions that provide useless, if not misleading

information about the system behavior.
14
Note that relax-

ation/equilibration should be viewed as a means to an end:

for equilibrium sampling, we only care that the relaxed state

is representative of any local energy minimum that the sys-
tem might sample, not how we arrived at that state, which

is ultimately why data generated during equilibration can be

discarded.

The RMSD trace in Fig. 2 illustrates typical behavior of

a system undergoing relaxation. Note the very rapid RMSD

increase in the first ≈ 200 ns. Part of this increase is simply
entropic: the volume of phase space within 1 Å of a protein

structure is extremely small, so that the process of thermal-

izing rapidly increases the RMSD from the starting structure,

regardless of how favorable or representative that structure is.
Thus, examining that initial rapid increase is not helpful in

determining an equilibration time. However, in this case, the

RMSD continues to increase past 3 Å, which is larger than

the amplitude of simple thermal fluctuations (shown by Fig.

2B), indicating an initial drift to a new structure, followed by

sampling.

Accepting that some data should be discarded, it is not

hard to see that we want to avoid discarding too much data,

given that many systems of interest are extremely expen-

sive to simulate. In statistical terms, we want to remove bias

but also minimize uncertainty (variance) through adequate

sampling. Before addressing this problem, however, we em-

phasize that the very notion of separating a trajectory into

equilibration and production segments only makes sense if

the system has indeed reached configurations important in

the equilibrium ensemble. While it is generally impossible

to guarantee this has occurred, some easy checks for deter-

mining that this has not occurred are described in Sec. 4. It
14
InMDmodeling of structural polymers (e.g., thermoset polymers), the prob-

lem of unphysical forces can be so severe that simulations become numerically

unstable and crash. This frequently manifests as systems that explode and/or

tear themselves apart. As a result, relaxation is often performed using Monte

Carlo moves that minimize energy without reference to velocities and forces.

is essential to perform those basic checks before analyzing data
with a more sophisticated approach that may assume a trajec-
tory has a substantial amount of true equilibrium sampling.

A robust approach to determining the equilibration time

is discussed in [29], which generalizes the notion of reverse

cumulative averaging [30] to observables that do not neces-

sarily have Gaussian distributions. The key idea is to analyze

time-series data considering the effect of discarding various

trial values of the initial equilibration interval, tequil (Fig. 5),
and selecting the value that maximizes the effective number

of uncorrelated samples of the remaining production region.

This effective sample size is estimated from the number of

samples in the production region divided by the number of

temporally correlated samples required to produce one ef-

fectively uncorrelated sample, based on an auto-correlation

analysis. At sufficiently large tequil, the majority of the initial
relaxation transient is excluded, and the method selects the

largest production region for which correlation times remain

short to maximize the number of uncorrelated samples. Care

must be taken in the case that the simulation is insufficiently

long to samplemany transitions among kinetically metastable

states, however, or else this approach can simply result in re-

stricting the production region to the last sampledmetastable

basin. A simpler qualitative analysis based on comparing for-

ward and reverse estimates of observables [31] may also be

helpful. Readers may want to compare auto-correlation times

for individual observables to the global “decorrelation time”

[32] described in Sec. 6. As another general check, if values

of observables estimated from the production phase depend

sensitively on the choice of tequil, it is likely that further sam-
pling is required.

6 Quantification of Global Sampling
With ideal trajectory data, one would hope to be able to com-

pute arbitrary observables with reasonably small error bars.

During a simulation, it is not uncommon to monitor specific

observables of interest, but after the data are obtained, it may

prove necessary to compute observables not previously con-

sidered. These points motivate the task of estimating global

sampling quality, which can be framedmost simply in the con-

text of single-trajectory data: “Among the very large number

of simulation frames (snapshots), how many are statistically

independent?” This number is called the effective sample size.
From a dynamical perspective evoking auto-correlation ideas,

which also apply to Monte Carlo data, how long must one wait

before the system completely loses memory of its prior con-

figuration? The methods noted in this section build on ideas

already presented in Sec. 4 on qualitative sampling analysis,

but attempt to go a step further to quantify sampling quality.

We emphasize that no single method described here has
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Figure 6. The basis for “decorrelation analysis” [32]. From a continu-
ous trajectory (blue curve), configurations can be extracted at equally

spaced time points (filled circles) with each such configuration cate-

gorized as belonging to one of a set of arbitrary states (delineated by

straight black lines). If the configurations are statistically independent

– if they are sufficiently decorrelated – then their statistical behavior

will match that predicted by a multinomial distribution consistent

with the trajectory’s fractional populations in each state. A range

of time-spacings can be analyzed to determined if and when such

independence occurs.

emerged as a clear best practice. However, because the global
assessment methods provide a powerful window into overall

sampling quality, which could easily be masked in the analysis

of single observables (Sec. 7), we strongly encourage their

use. The reader is encouraged to try one or more of the

approaches in order to understand the limitations of their

data.

A key caveat is needed before proceeding. Analysis of

trajectory data generally cannot make inferences about parts

of configuration space not visited [12]. It is generally impos-

sible to know whether configurational states absent from a

trajectory are appropriately absent because they are highly

improbable (extremely high energy) or because the simula-

tion simply failed to visit them because of a high barrier or

random chance.

6.1 Global sampling assessment for a single
trajectory

Twomethods applicable for a single trajectory were previously

introduced by some of the present authors, exploiting the

fact that trajectories typically are correlated in time. That is,

each configuration evolves from and is most similar to the

immediately preceding configuration; this picture holds for

standard MD and Markov-chain MC. Both analysis methods

are implemented as part of the software package LOOS [33,

34].

Lyman and Zuckerman proposed a global “decorrelation”

analysis by mapping a trajectory to a discretization of con-

figuration space (set of all x, y, z coordinates) and analyzing

the resulting statistics [32]. See Fig. 6. Configuration space is

discretized into bins based on Voronoi cells
15
of structurally

similar configurations, e.g., using RMSD defined in Eq. 9 or

another configurational similarity measure; reference con-

figurations for the Voronoi binning are chosen at random or

more systematically as described in [32]. Once configuration

space is discretized, the trajectory frames can be classified

accordingly, leading to a discrete (i.e., ’multinomial’) distribu-

tion (Fig. 6). The analysis method is based on the observation

that the variance for any bin of a multinomial distribution

is known, given the bin populations (from trajectory counts)

and a specified number of independent samples drawn from

the distribution [32]. The knowledge of the expected variance

allows testing of increasing waiting times between configu-

rations drawn from the trajectory to determine when and

if the variance approaches that expected for independent

samples. The minimum waiting time yielding agreement with

ideal (i.e., uncorrelated) statistics yields an estimate for the

decorrelation/memory time, which in turns implies an overall

effective sample size.

A second method, employing block covariance analysis

(BCOM), was presented by Romo and Grossfield [35] build-

ing on ideas by Hess [36]. In essence, the method combines

two standard error analysis techniques — block averaging

[37] and bootstrapping [38]— with covariance overlap, which

quantitatively measures the similarity of modes determined

from principal component analysis (PCA) [36]. PCA in essence

generates a new coordinate system for representing the fluc-

tuation in the system while tracking the importance of each

vector; the central idea of the method is to exploit the fact

that as sampling improves, the modes generated by PCA

should become more similar, and the covariance overlap will

approach unity in the limit of infinite sampling.

When applying BCOM, the principal components are com-

puted from subsets of the trajectory, and the similarity of the

modes evaluated as a function of subset size; as the subsets

get larger, the resulting modes become more similar. This

is done both for contiguous blocks of trajectory data (block

averaging), and again for randomly chosen subsets of trajec-

tory frames (bootstrapping); taking the ratio of the two values

as a function of block size yields the degree of correlation in

the data. Fitting that ratio to a sum of exponentials allows

one to extract the relaxation times in the sampling. The key

advantage of this method over others is that it implicitly takes

into account the number of substates; the longest correlation

time is the time required not to make a transition, but to

sample a scattering of the relevant states.

15
A Voronoi cell is defined to be the set of configurations closest to a given

reference structure.
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6.2 Global sampling assessment for multiple
independent trajectories

When sampling is performed using multiple independent tra-

jectories (whether MD or MC), additional care is required.

Analyses based solely on the assumption of sequential corre-

lations may break down because of the unknown relationship

between separate trajectories.

Zhang et al. extended the decorrelation/variance analysis

noted above, while still retaining the basic strategy of infer-

ring sample size based on variance [39]. To enable assess-

ment of multiple trajectories, the new approach focused on

conformational state populations, arguing that the states fun-

damentally underlie equilibrium observables. Here, a state is

defined as a finite region of configuration space, which ide-

ally consists of configurations among which transitions are

faster than transitions among states; in practice, such states

can be approximated based on kinetic-clustering Voronoi

cells according to the inter-state transition times [39]. Once

states are defined, the approach then uses the variances in

state populations among trajectories to estimate the effective

sample size, motivated by the decorrelation approach [32]

described above.

Nemec and Hoffmann proposed related sampling mea-

sures geared specifically for analyzing and comparing multi-

ple trajectories [40]. These measures again do not require

user input of specific observables but only a measure of the

difference between conformations, which was taken to the

be the RMSD. Nemec and Hoffmann provide formulas for

quantifying the conformational overlap among trajectories

(addressing whether the same configurational states were

sampled) and the density agreement (addressing whether

conformational regions were sampled with equal probabili-

ties).

7 Computing uncertainty in specific
observables

7.1 Basics
Here we address the simple but critical question, “What error

bar should I report?” In general, there is no one-best practice

for choosing error bars [2]. However, in the context of sim-

ulations, we can nonetheless identify common goals when

reporting such estimates: 1) to help authors and readers bet-

ter understand uncertainty in data; and 2) to provide readers

with realistic information about the reproducibility of a given

result.

With this in mind, we recommend the following: (a) in

fields where there is a definitive standard for reporting uncer-

tainty, the authors should follow existing conventions; (b) oth-

erwise, such as for biomolecular simulations, authors should

report (and graph) their best estimates of 95 % confidence in-
tervals. (c) when feasible and especially for a small number
of independent measurements (n < 10), authors should con-
sider plotting all of the points instead of an average with error

bars.

We emphasize that as opposed to standard uncertainties

[s (x̄)], confidence intervals have several practical benefits that
justify their usage. In particular, they directly quantify the

range in which the average value of an observed quantity is

expected to fall, which is more relatable to everyday expe-

rience than, say, the moments of a probability distribution.

As such, confidence intervals can help authors and readers

better understand the implications of an uncertainty analysis.

Moreover, downstream consumers of a given paper may in-

clude less statistically oriented readers for whom confidence

intervals are a more meaningful measure of variation.

In a related vein, error bars expressed in integer multiples

of s (x̄) can be misinterpreted as unrealistically under or over-
estimating uncertainty if taken at face value. For example,

reporting 3s (x̄) uncertainties for a normal random variable
amounts to a 99.7 % level of confidence, which is likely to be a

significant overestimate for many applications. On the other

hand, 1s (x̄) uncertainties only correspond to a 68 % level of
confidence, which may be too low. Given that many read-

ers may not take the time to make such conversions in their

heads, we feel that it is safest for modelers to explicitly state

the confidence level of their error bar or reported confidence

interval.

In recommending 95 % confidence intervals, we are admit-

tedly attempting to address a social issue that nevertheless

has important implications for science as a whole. In particu-

lar, the authors of a study and the reputation of their field do

not benefit in the long run by under-representing uncertainty,

since this may lead to incorrect conclusions. Just as impor-

tantly, many of the same problems can arise if uncertainties

are reported in a technically correct but obscure and difficult-

to-interpret manner. For example, 1s (x̄) error bars may not
overlap and thereby mask the inability to statistically distin-

guish two quantities, since the corresponding confidence

intervals are only 68 %. With this in mind, we therefore wish

to emphasize that visual impressions conveyed by figures in

a paper are of primary importance. Regardless of what a

research paper may explain carefully in text, error bars on

graphs create a lasting impression and must be as informa-

tive and accurate as possible. If 95 % confidence intervals are

reported, the expert reader can easily estimate the smaller

standard uncertainty (especially if it is noted in the text), but

showing a graph with overly small error bars is bound to mis-

lead most readers, even experts who do not search out the

fine print.

As a final note, we remind readers that only significant
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figures should be reported. Additional digits beyond the

precision implicit in the uncertainty are unhelpful at best, and

potentially misleading to readers who may not be aware of

the limitations of simulations or statistical analyses generally.

For example, if the mean of a quantity is calculated to be

1.23456 with uncertainty ±0.1 based on a 95 % confidence
interval, then only two significant figures should be reported

for the mean (1.2).

7.2 Overview of procedures for computing a
confidence interval

We remind readers that they should perform the semiquanti-

tative sampling checks (Sec. 4) before attempting to quantify

uncertainty. If the observable of interest is not fluctuating

about a mean value but largely increasing or decreasing dur-

ing the course of a simulation, a reliable quantitative estimate

for the observable or its associated uncertainty cannot be

obtained.

For observables passing the qualitative tests noted above

in Sec. 4, we advocate obtaining confidence intervals in one

of two ways:

• For observables that are Gaussian-distributed (or as-
sumed to be, as an approximation or due to lack of

information), an appropriately chosen coverage factor k
(typically in the range of 2 to 3; see Sec. 7.5 for further

details) is multiplied by the standard uncertainty s (x̄)
to yield the expanded uncertainty, which estimates the

95 % confidence interval.

• For non-Gaussian observables, a bootstrapping ap-
proach (Sec. 7.6) should be used. An example of a

potentially non-Gaussian observable is a rate-constant,

which must be positive but could exhibit significant

variance. As such, a confidence interval estimated with

a coverage factor may lead to an unphysical negative

lower limit. In contrast, bootstrapping does not assume

an underlying distribution but instead constructs a

confidence interval based on the recorded data values,

and the limits cannot fall outside the extreme data

values; nevertheless, bootstrapped confidence intervals

can have shortcomings [41, 42]. Bootstrapping is

also sometimes useful for estimating uncertainties

associated with derived observables.

Below we describe approaches for estimating the stan-

dard uncertainty s (x̄) from a single trajectory with a cover-
age factor k as well as the bootstrapping approach for direct
confidence-interval estimation. Whether using a coverage fac-

tor and standard uncertainty or bootstrapping, one requires

an estimate for the independent number of observations in

a given simulation. This requires care, but may be accom-

plished based on the effective sample size described in Sec. 6,

via block averaging, or by analysis of a time-correlation func-

tion. However, thesemethods have their limitations andmust

be used with caution. In particular, both block averaging and

autocorrelation analyses will produce effective sample sizes

that depend on the quantity of interest. To produce reliable

answers, one must therefore identify and track the slowest

relevant degree of freedom in the system, which can be a

non-trivial task. Even apparently fast-varying properties may

have significant statistical error if they are coupled to slower

varying ones, and this error in uncertainty estimation may

not be readily identifiable by solely examining the fast-varying

time series.

In the absence of a reliable estimate for the number of in-

dependent observations, one can perform n independent sim-
ulations and calculate the standard deviation s (x) for quantity
x (which could be the ensemble average of a raw data output
or a derived observable) among the n simulations, yielding a
standard uncertainty of s (x̄) = s (x) /√n. When computing the
uncertainty with this approach, it is important to ensure that

each starting configuration is also independent or else to rec-

ognize and report that the uncertainty refers to simulations

started from a particular configuration. The means to obtain

independent starting configurations is system-dependent,

but might involve repeating the protocol used to construct a

configuration (solvating a protein, inserting liquid molecules

in a box, etc.), and/or using different seeds to generate ran-

dom configurations, velocities, etc. However, readers are

cautioned that for complex systems, it may be effectively im-
possible to generate truly independent starting configurations
pertinent to the ensemble of interest. For example, a simulation
of a protein in water will nearly always start from the experi-

mental structure, which introduces some correlation in the

resulting simulations even when the remaining simulation

components (water, salt, etc.) are regenerated de novo.
7.3 Dealing with correlated time-series data
When samples of a simulated observable are independent,

the experimental standard deviation of the mean (i.e., Eq. 8)

can be used as an estimate of the corresponding standard

uncertainty. Due to correlations, however, the number of

independent samples in a simulation is neither equal to the

number of observations nor known a priori; thus Eq. 8 is
not directly useful. To overcome this problem, a variety of

techniques have been developed to estimate the effective

number of independent samples in a dataset. Two meth-

ods in particular have gained considerable traction in recent

years: (i) autocorrelation analyses, which directly estimate

the number of independent samples in a time series; and (ii)

block averaging, which projects a time series onto a smaller

dataset of (approximately) independent samples. We now

discuss these methods in more detail.
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7.3.1 Autocorrelation method for estimating the

standard uncertainty

Conceptually, autocorrelation analyses directly compute the

effective number of independent samples Nind in a time se-
ries, taking into account “redundant” (or even possibly new)

information arising from correlations.
16

In particular, this

approach invokes the fact that the statistical properties of

steady-state simulations (e.g., those in equilibrium or non-

equilibrium steady state) are, by definition, time-invariant.

As such, correlations between an observable computed at

two different times depends only on the lag (i.e., difference)

between those times, not their absolute values.

This observation motivates one to compute an autocor-

relation function. Specifically, one computes the stationary

autocorrelation function Cj as given in Eq. 10 for a set of lags j.
Then, the number of independent samples is estimated by

17

Nind = N
1 + 2

∑Nmaxj=1 Cj (11)

where Nmax is an appropriately chosen maximum number
of lags (see below). Note that Nind need not be an integer.
Finally, the standard uncertainty is estimated via

s (x̄) = s (x)√Nind (12)

We note that the experimental standard deviation of the ob-

servable x is used in Eq. 12 to estimate the uncertainty. Strictly
speaking, the standard uncertainty should be estimated using

the true standard deviation of x (e.g., σx); given that the true
standard deviation is unknown, the experimental standard

deviation is used in its place as an estimate of σx [14].
In evaluating Eq. (11), the value of Nmax must be chosen

with some care. Roughly speaking, Nmax should be large
enough so that the sum is converged and insensitive to the

choice of upper bound. Although a very large value of Nmax
might seem necessary for slowly decaying autocorrelation

functions, appropriate truncations of the sum will introduce

negligible error, even if the correlation time is infinite. We

refer readers to discussions elsewhere on this topic, for exam-

ple, Refs. [12, 43–45]. In typical situations, Nmax can be set to
16
It is worth pointing out that correlations do not always provide redundant

information. Consider, for example, the time series 1, –1, 1, –1, 1, –1, .... In the

limit that the number of elements goes to infinity, the arithmetic mean also

converges to zero. However, a block of 2n entries also has a mean of zero, so
that (anti)correlations effectively increase the amount of information. See also

Ref. [14].

17
The reader should note that both the autocorrelation function (Eq. 10)

and the number of independent samples (Eq. 11) may be written in different

forms[12, 29]. Our convention here presents the observations as a list
{xj} in

which the time interval (Molecular Dynamics) or trial spacing (Monte Carlo) of

adjacent xj is implicitly fixed. For time-series data, one could alternately write
both the observations and autocorrelation function as continuous functions of

time, e.g., x (t) and C (τ ) where τ is the lag time. In that case, Nind is written as a
division of the total simulation time by the time integral of C (τ )[12].

any value greater than τ , since in principle Cj = 0 for all j > τ .
However, care must be exercised to avoid integrating pure

noise over too large of an interval, since this can generate

Brownian motion; see, for example, Ref. [46] and references

contained therein.

7.3.2 Block averaging method for estimating the

standard uncertainty

The main idea behind block averaging is to permit the direct

usage of Eq. 6 by projecting the original dataset onto one

comprised of only independent samples, so that there is no

need to compute Nind. Acknowledging that typical MD time
series have a finite-correlation time τ , we recognize that a

continuous block ofM data-points will only be correlated with
its adjacent blocks through its first and last τ points, provided

τ is small compared to the block size M. That is, correlations
will be on the order of τ /M, which goes to zero in the limit of
large blocks.

This observation motivates a technique known as block

averaging [12, 37, 47, 48]. Briefly, the set of N observations
{x1, ..., xN} are converted to a set of M “block averages”{xb
1
, ..., xbM

}
, where a block average xbj is the arithmetic mean

of n (the block size) sequential measurements of x:

xbj =
jn∑

k=1+(j–1)n xk
n (13)

From this set of block averages, one may then compute the

arithmetic mean of the block averages, x̄b, which is an esti-
mator for 〈x〉.18 Following, one computes the experimental
standard deviation of the block averages, s(x̄b), using Eq. 6.
Lastly, the standard uncertainty of x̄b is just the experimen-
tal standard deviation of the mean given the set of M block
averages:

s(x̄b) = s
(xb)
√M (14)

This standard uncertainty may then be used to calculate a

confidence interval on x̄b.
It is important to note that for statistical purposes, the

blocks must all be of the same size in order to be identically

distributed, and thereby satisfy the requirements of Eq. 8.

It is also important to systematically assess the impact of

block size on the corresponding estimates. In particular, as

the blocks get longer, the block averages should decorrelate

and s(x̄b) should plateau [12, 37]. Another approach is to
measure the block correlation and to use it to improve the

selection of the block size and, hence, uncertainty estimate

[49]. We stress that this final step of adjusting the block size

18
Note that in general x̄ 6= x̄b if the block averages discard some observations

of xl , for example, when the total number of observations is not a multiple of
the block size.

16 of 24

https://doi.org/10.33011/livecoms.1.1.5067Living J. Comp. Mol. Sci. 2019, 1(1), 5067

https://doi.org/10.33011/livecoms.1.1.5067


A LiveCoMS Best Practices Guide

and recomputing the block standard uncertainty is absolutely

necessary. Otherwise, the blocks may be correlated, yielding

an uncertainty that is not meaningful.

7.4 Propagation of uncertainty
Oftentimes we run simulations for the purposes of computing

derived quantities, i.e., those that arise from some analysis

applied to raw data. In such cases, it is necessary to propa-

gate uncertainties in the raw data through the corresponding

analysis to arrive at the uncertainties associated with the de-

rived quantity. Frequently, this can be accomplished through

a linear propagation analysis using Taylor series, which yields

simple and useful formulas.

The foundation for this approach lies in rigorous results

for the propagation of error through linear functions of ran-

dom variables. For a derived observable that is a linear func-

tion of M uncorrelated raw data measurements, e.g.,
F ({xi}) = c +

M∑
i=1
aixi, (15)

where c is a constant, the experimental variance of F may be
rigorously expressed as [50]

s2 (F) = M∑
i=1
a2i s2 (xi) (16)

A key assumption in Eq. 16 is that the raw data, {xi}, are lin-
early uncorrelated (see Eq. 7). If any observed quantities

are correlated, the uncertainty in F must include “covariance”
terms. The reader may consult Sec. 2.5.5, “Propagation of

error considerations” in Ref. [50] for further discussion. For

reasons of tractability, we restrict the discussion here to lin-

early uncorrelated observables or the assumption thereof.

The situation for a nonlinear derived quantity is much

more complicated and, as a result, rigorous expressions for

the uncertainty of such functions are rarely used in practice.

As a simplification, however, one approximates the nonlin-

ear derived quantity as a Taylor-series expansion about a

reference point, i.e.,

F ({xi}) ≈ F ({x̄i}) +
M∑
j=1

(
∂F
∂xj
)∣∣∣∣∣
{x̄i}
(xj – x̄j) + · · · (17)

The deviation of a particular measurement from its mean,

εi = xi – x̄i, is itself a random quantity, and the uncertainty
in those measurements is propagated into uncertainty in F.
Note that the ratio εi/x̄i is the so-called “noise-to-signal” ratio,
which vanishes in the limit of a precise measurement. With

this linear approximation of F , which is analogous to Eq. 15
with ai = (∂F/∂xi), and the assumption that the raw data are
uncorrelated, the variance in F may be approximated by

s2 (F) ≈ M∑
j=1

(
∂F
∂xj
)2∣∣∣∣∣∣

{x̄i}
s2 (xj) (18)

A simple example illustrates this procedure. Consider, in

particular, the task of estimating the uncertainty in a mea-

surement of density, ρ = m/V , from a time series of volumes
output by a constant pressure simulation, wherem is the (con-
stant) system mass and V is the (fluctuating) system volume.
Application of Eq. 18 to the definition of ρ yields

s2 (ρ) ≈
( N̄
V2
)2 s2 (V ) (19)

s (ρ) ≈ ρ̄
s (V )
V̄ (20)

with ρ̄ = N/V̄ . This approximation of the experimental stan-
dard deviation may be used to estimate a confidence interval

on ρ̄ or for other purposes.

In general, approximations in the spirit of Eq. 20 are useful

and easy to generalize to higher-dimensional settings in which

the derived observable is a nonlinear combination of many

data-points or sets. However, the method does have limits. In

particular, it rests on the assumption of a small noise-to-signal

ratio, which may not be valid for all simulated data. If there is

doubt as to the quality of an estimate, the uncertainty should

therefore be estimated with alternative approaches such as

bootstrapping in order to validate the linear approximation.

See also the pooling analysis of Ref. [11] for a method of

assessing the validity of linear approximations.

7.5 From standard uncertainty to confidence
interval for Gaussian variables

Once a standard uncertainty value is obtained for a Gaussian-

distributed random variable with mean
〈x〉, and the number

of independent samples n has been estimated, the 95 %-
confidence interval

[x̄ – k s (x̄) , x̄ + k s (x̄)] can be constructed
on the basis of an established look-up table (or a statistics

software model) for the coverage factor k based on n. The
theoretical basis for the table is the “Student” or “t” distri-
bution, which is not Gaussian, but governs the behavior of
an average derived from n independent Gaussian variables
[9]. Table 1 lists k for two-sided 95 % confidence intervals for
select values of n.
As a reminder, multi-modally distributed variables with

multiple peaks in their distributions cannot be considered

Gaussian random variables. Variables with a strict upper or

lower limit (such as a non-negative quantity) and long-tailed

distributions are also not Gaussian. These cases should be

treated with bootstrapping.

7.6 Bootstrapping
Bootstrapping is an approach to uncertainty estimation that

does not assume a particular distribution for the observable

of interest or a particular kind of relationship between the ob-

servable and variables directly obtained from simulation [38].
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n (independent samples) k (coverage factor)
6 2.57

11 2.23

16 2.13

21 2.09

26 2.06

51 2.01

101 1.98

Table 1. Coverage factors k required for a two-sided 95 % confi-
dence interval for a Gaussian variable [9]. Note that k increases with
decreasing sample size. This in turn implies that smaller samples

yield higher uncertainty for a given estimation of the experimental

standard deviation.

A full discussion of bootstrapping and resampling methods

is outside the scope of this article; we will cover the broad

strokes here, and suggest interested readers consult excellent

discussions elsewhere for more details (e.g. Refs. [41], [42],

and, particularly, [38]).

In nonparametric bootstrapping, new, “synthetic” data sets

(corresponding to hypothetical simulation runs) are created

by drawing n samples (configurations) from the original col-
lection that was generated during the actual run. The same

sample may be selected twice, while others may not be se-

lected at all in a process called “sampling with replacement.”

In doing so, these synthetic sets will be different even though

they all have the same number of samples and draw from

the same pool of data. Having created a new set, the data

are analyzed to determine the derived quantity of interest,

and this process is repeated to produce multiple estimates

of the quantity. The distribution of “synthetic” observables

can be directly used to construct a 95 % confidence interval

from the 2.5 percentile to the 97.5 percentile value. Readers

are cautioned that bootstrapping confidence intervals are

not quantitatively reliable in certain cases such as with small-

sample sizes or distributions that are skewed or heavy-tailed

[41, 42].

The process described above assumes that the original

simulation data are uncorrelated. If this is not the case, then

the resampling method can be reformulated in one of two

ways. The first option is to estimate the number of indepen-

dent samples in the original set (e.g., using an autocorrelation

method [29, 32]) and to pull only that many samples to create

the new data sets. The second option is to group the samples

into blocks that are uncorrelated based on analyzing varying

block sizes (see Sec. 7.3.2) and to then use the block averages

as the samples for bootstrapping.

Alternatively, one could use the difference between er-

rors estimated via block averaging and bootstrapping as a

measure of the correlation; if one tracks the bootstrapped

and block-averaged estimates of a quantity’s uncertainty as

a function of block size, the only difference between the two

modes of calculation is whether the data are correlated. The

decay in the ratio of the two quantities as a function of time

is a measure of the correlation time in the sample [35].

7.6.1 Bootstrapping variants

An alternate approach that can directly account for corre-

lations is called parametric bootstrapping. The main idea

behind this method is to model the original data as a de-

terministic function (which can be zero, constant, or have

free parameters) plus additive noise. The parameters of this

model, including the structure of the noise (i.e., its covariance),

can be determined through a statistical inference procedure.

Having calibrated the model, random number generators can

be used to sample the noise, which is then added back to the

trial function to generate a synthetic data set. As with the

nonparametric bootstrap, the generated data can be used to

compute the derived quantity of interest, and the uncertainty

can be obtained from the statistics of the values compute

with different generated sets.

To further clarify the procedure of parametric bootstrap-

ping, consider the simplest case in which the data are a col-

lection of uncorrelated random variables fluctuating about a

constant mean. In this situation, one could estimate (I) the

deterministic part of a parametric model using the sample

mean x̄ of the data, and (II) the stochastic part as a Gaussian
random variable whose variance equals the sample variance.

If instead the data are correlated (e.g., as in a time series of

simulated observables), one can postulate a covariance func-

tion to describe the structure of this randomness. Often these

covariance functions are formulated with free parameters (of-

ten called “hyperparameters”) that characterize properties

such as the noise-scale and characteristic length of correla-

tions [51]. In such cases, determining the hyperparameters

may require more sophisticated techniques such as maxi-

mum likelihood analyses or Bayesian approaches; see, for

example, Ref. [51]. See also Refs. [11, 24, 52] for examples

and practical implementations applied to cases in which the

deterministic component of the data is not constant.

It is important to note that various bootstrapping ap-

proaches can and often are used as uncertainty propagation

tools. Nonetheless, care should be exercised when using

such methods with either nonlinear functions or naturally

constrained functions. For example, consider application of

the parametric bootstrap technique to a free energy calcula-

tion,

β∆A = – ln [exp (–β∆U)] (21)

If synthetic samples are drawn for exp(–β∆U) from, say, a
Gaussian centered at 1 with a standard deviation of 0.5, new

estimates will eventually output negative numbers. This is,
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of course, mathematically nonsensical for the exponential

function. Thus, one should be aware of any distributional

assumptions imposed either by the physics of the problem

or the mathematical analyses of synthetic data.

Lastly, an alternative to bootstrapping is the “jackknife”

method [53–55] (also outlined in Ref. [38]). It operates sim-

ilar to the bootstrap as a resampling technique, but it uses

synthetic data sets created by subtraction of some number

of samples rather than replacement; as such it is often cate-

gorized as a variant of the bootstrap (even though it predates

the bootstrap). Since it operates by sample deletion, it may

be better suited to smaller data sets for which a few samples

may be overrepresented in the synthetic data set created by

the bootstrap replacement technique. Ultimately, though, the

results are similar in that the jackknife technique creates a dis-

tribution of derived observables that can be used to compute

an arithmetic mean, an estimate of the standard uncertainty,

and confidence intervals.

7.7 Dark uncertainty analyses
In some cases, multiple simulations of the same physical ob-

servable τ may yield predictions whose error bars do not

overlap. This situation can arise, for example, in simulations

of the glass transition temperature when undersampling the

crosslinked network structure of certain polymers. In such

cases, it is reasonable to postulate an unaccounted for source

of uncertainty, which we colorfully refer to as “dark uncer-

tainty” [11]. In the context of a statistical model, we postulate

that the probability of a simulation output depends on the

unobserved or “true”mean value τ̄ , an uncertainty σ2i whose
value is specific to the simulation (estimated, e.g., according

to uncertainty propagation), and the unaccounted-for dark

uncertainty y2. (For simplicity, the σ2i and y2 should be treated
as variances.)

While details are beyond this scope of this document, such

a model motivates an estimate of τ̄ of the form

τ̄ ≈ T ∝
∑
i

Ti
σ2i + y2 , (22)

where T is a “consensus” or weighted-mean estimate of the
true mean τ̄ , Ti is the prediction from the ith simulation, σ2i
is its associated “within-simulation” uncertainty, and y2 is
the “dark” or “between-simulation” uncertainty; note that the

latter does not depend on i. The variable y2 can be estimated
from a maximum-likelihood analysis of the data and amounts

to numerically solving a relatively simple nonlinear equation

(see Ref. [11]). Equation 22 is useful insofar as it weights

simulated results according to their certainty while reducing

the impact of overconfident predictions (e.g., having small σ2i ).
Additional details on this method are provided in Ref. [11]

and the references contained therein.

7.8 Propagation across multiple steps
In some instances, it is useful and/or necessary to propagate

uncertainty across different simulation steps. This occurs, for

example, when the property of a constant pressure system

can only be computed using constant volume simulations

(e.g., for certain viscosity calculations). In such cases, uncer-

tainty in the system volume must be accounted for in the

final property prediction, which carries its own uncertainties

associated with the simulation protocol, input parameters,

etc. Related issues arise when attempting to account for

uncertainty in force-field parameters [5–7].

Addressing these uncertainty propagation tasks may be

as simple as performing a linear or bootstrap analysis as

previously described, but at each step of the simulation pro-

tocol. In other cases, especially when propagation must be

performed between different simulations, such approaches

are computationally expensive and, thus, infeasible. A variety

of methods (surrogate modeling, polynomial chaos, Gaussian-

process regression, etc.) are being actively explored by the

community, but in many instances few, if any approaches,

have emerged as widely accepted strategies. We encourage

the reader to stay informed of current literature, some of

which is referenced herein [56].

8 Assessing Uncertainty in Enhanced
Sampling Simulations

While recent advances in computational hardware have

allowed MD simulations of systems with biological relevance

to routinely reach timescales ranging from hundreds of

ns to µs, in many cases this is still not long enough to

obtain equilibrated (i.e., Boltzmann-weighted) structural

populations. Intrinsic timescales of the systems may be

much longer. Enhanced sampling methods can be used to

obtain well-converged ensembles faster than conventional

MD. In general, enhanced sampling methods work through a

combination of modifying the underlying energy landscape

and/or thermodynamic parameters to increase the rate at

which energy barriers are crossed along with some form of

reweighting to recover the unbiased ensemble [15]. However,

such methods do not guarantee a converged ensemble, and

care must be taken when using and evaluating enhanced

sampling methods.

Generally speaking, uncertainty analysis is more challeng-

ing for data generated by an enhanced sampling method. The

family of enhanced equilibrium sampling methods, examples

of which include replica exchange and variants [57–59], local

elevation [60], conformational flooding [61], metadynamics

[62, 63], and adaptive biasing force [64–66] to name a few, are

complex and the resulting data may have a highly non-trivial

correlation structure. In replica exchange, for example, the en-
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semble at a temperature of interest will be based on multiple

return visits of different sequentially correlated trajectories.

Before performing an enhanced-sampling simulation, con-

sider carefully whether the technique is needed, and consult

the literature for best practices in setting up a simulation.

Even a straightforward MD simulation requires considerable

planning, and the complexity is much greater for enhanced

techniques.

Given the subtleties of these sampling approaches, when

possible, consider taking a “bottom line” approach, and as-

sessing sampling based on multiple independent runs. The

variance among these runs, if the approach is not biased, will

help to quantify the overall sampling. Note that methods

applicable to global assessment of multiple trajectories (Sec.

6.2) should be valid for analyzing multiple runs of an arbitrary

method. However, a caveat for the approach of Zhang et

al. [39] is that some dynamics trajectory segments would be

required to perform state construction by kinetic clustering.

8.1 Replica Exchange Molecular Dynamics
One of the most popular enhanced sampling methods is

replica exchange MD (REMD) [58]; see also [57]. Broadly

speaking, REMD consists of running parallel MD simulations

on a number of non-interacting replicas of a system, each with

a different Hamiltonian and/or thermodynamic parameters

(e.g., temperature), and periodically exchanging system coor-

dinates between replicas according to a Metropolis criterion

which maintains Boltzmann-factor sampling for all replicas.

In order to assess the results of a REMD simulation, it

is important to consider not just the overall convergence of

the simulation to the correct Boltzmann-weighted ensemble

of structures (via e.g., combined clustering, see Sec. 4), but

how efficiently the REMD simulation is doing so. These con-

cepts are termed "thermodynamic efficiency" and "mixing

efficiency" by Abraham and Gready [67], and it is quite possi-

ble to achieve one without the other; both must be assessed.

In order for sampling to be efficient, coordinates must be

able to move freely in replica space.

In practical settings, several metrics are often used to

assess these two efficiencies, a few of which we list below.

In these definitions, note that we refer to both "coordinate

trajectories" and "replica trajectories". A "coordinate trajec-

tory" follows an individual system’s continuous trajectory as

it traverses replica space (e.g., a system experiencing mul-

tiple temperatures as it is exchanged during a temperature

REMD simulation). A "replica trajectory" is the sequence of

configurations corresponding to a single replica under fixed

Hamiltonian and thermodynamic conditions, (e.g., all struc-

tures at a temperature of 300 K in a temperature REMD sim-

ulation). Thus, a replica trajectory consists of concatenated

coordinate-trajectory segments and vice versa.

Below are several checks that should be applied to REMD

simulation data.

• Exchange acceptance. The exchange acceptance rate
(i.e., the number of exchanges divided by the number

of exchange attempts) between neighboring replicas

should be roughly equivalent to each other and to the

target acceptance rate. A low exchange acceptance

between neighboring replicas relative to the average ex-

change acceptance rate creates a bottleneck in replica

space which in turn can lead to poor sampling of the

overall configuration space. In such cases, the replica

spacing may need to be decreased or additional repli-

cas used. Conversely, a high exchange acceptance rate

between neighboring replicas relative to the average

exchange acceptance rate may indicate that more re-

sources than necessary are being used to simulate repli-

cates, and that good sampling can be achieved with

fewer replicas or larger replica spacing.

• Replica round trips. The time taken for a coordinate tra-
jectory to travel from the lowest replica to the highest

and back is called the replica "round trip" time. Over

the course of a REMD simulation, any given coordinate

trajectory should make multiple round trips. The ratio-

nale behind this is that every replica should contribute

to enhancing the sampling of every set of starting co-

ordinates. One can look at the average, minimum, and

maximum round trip times among the coordinate tra-

jectories: these should be similar for any given set of

coordinates. See e.g., Fig. 6 in [25]. If they are not, it is

likely due to one or more bottlenecks in replica space

which can be identified by a relatively low exchange

acceptance rate (see the previous bullet point).

• Replica residence time. The time a coordinate trajectory
spends at a replica is called the "replica residence time".

For replica sampling to be efficient, the replica residence

time for each set of starting coordinates at each replica

should be roughly equivalent. If it is not (i.e., if a set of

starting coordinates is spending a much larger amount

of time at certain replicas compared to the overall aver-

age) this can also indicate one or more bottlenecks in

replica space. An example of this is shown in Fig. 7 in

Ref. [25].

• Distributions of quantities calculated from coordinate
trajectories. If all coordinates are moving freely in

replica space, they should eventually converge to the

same ensemble of structures. Comparing distributions

of various quantities from coordinate trajectories can

provide a measure of how converged the simulation

is. For example, one can compare the distribution of

RMSD values of coordinate trajectories to a common

20 of 24

https://doi.org/10.33011/livecoms.1.1.5067Living J. Comp. Mol. Sci. 2019, 1(1), 5067

https://doi.org/10.33011/livecoms.1.1.5067


A LiveCoMS Best Practices Guide

reference structure; see e.g., Fig. 8 in Ref. [68]. Poor

overlap can be an indication that replica efficiency is

poor or the simulation is not yet converged.

All of the above quantities (replica residence time, round

trip time, lifetimes etc) can be calculated with CPPTRAJ [69],

which is freely available from https://github.com/Amber-MD/

cpptraj or as part of AmberTools (http://ambermd.org).

It may also be useful to perform multiple REMD runs.

Using the standard uncertainty among runs can quantify un-

certainty and provide the basis for a confidence interval with

an appropriate coverage factor - see definitions in Sec. 1. If

the ensembles produced depend significantly on the set of

starting configurations, that is a sign of incomplete sampling.

8.2 Weighted Ensemble simulations
The weighted ensemble (WE) method orchestrates an ensem-

ble of trajectories that are intermittently pruned or replicated

in order to enhance sampling of difficult-to-access regions of

configuration space [70]. The final set of trajectories can be

visualized as a tree structure based on the occasional repli-

cation and pruning events. WE is an unbiased method that

can be used to sample rare transient behavior [71] as well as

steady states [72] including equilibrium [73].

Like other enhanced sampling methods, WE’s tree of tra-

jectories has a complex correlation structure requiring care

for uncertainty analysis. It is important to understand the ba-

sic theory and limitations of the WE method, as is discussed

in a WE overview document.

From a practical standpoint, the safest way to assess un-

certainty in WE simulations is to run multiple instances (which

can be seeded from identical or different starting structures

depending on the desired calculation) from which a variance

and standard uncertainty in any observable can be calcu-

lated. Note particularly that WE tracks the time evolution of

observables as the system relaxes (perhaps quite slowly) to

equilibrium or another steady state [71]; hence, the variance

computed in an observable from multiple runs should be

based on values at the same time point.

When it is necessary to estimate uncertainty based on a

single WE run, the user should treat the (ensemble-weighted)

value of an observable measured over time much like an ob-

servable in a standard single MD simulation; this is because

the correlations in ensemble averages are sequential in time.

First, as discussed in Sec. 4, the time trace of the observable

should be inspected for relaxation to a nearly constant value

about which fluctuations occur. A transient/equilibration pe-

riod should be removed in analogy to MD - see Sec. 5 - and

then best practices for single observable uncertainties should

be followed as described in Sec. 7. Despite this rather neat

analogy to conventional MD, experience has shown that run-

to-run variance in WE simulations of challenging systems

can be large, so multiple runs are advised. In the future,

variance-reduction techniques may alleviate the need for mul-

tiple runs.

9 Concluding Discussion
As computational scientists, we often spend vast resources

modeling complex systems. With the thought and care in-

volved in setting up these simulations, it is therefore surpris-

ing that significantly less time may be spent thinking about

how to analyze and understand the validity of the generated

data. Do our simulations not deserve better?

We have spent some twenty odd pages telling you, reader,

how and why you should run more simulations and do more

analyses to vet the reliability of any given result. Given that

any one of these tasks could take as long as running a produc-

tion simulation, we face the invariable reality that uncertainty

quantification (UQ) can substantially increase the time re-

quired to complete a project. Thus, we wish to adjust our

readers’ expectations: the time needed to perform a simu-

lation study is not the time spent simulating. Rather, it is

the time needed to: (i) generate data; (ii) thoughtfully analyze
it (whether by means of a posteriori UQ methods or additional
simulations); and (iii) clearly communicate the means to and
interpretations of the resulting uncertainties.
Ultimately we take the perspective that this extra effort

gives us more confidence in our computational results. While

this benefit may seem soft, note that industrial stakeholders
actively use simulations and simulated results to make costly

economic decisions. Thus, it could be argued that by not do-

ing UQ, we invariably diminish the usefulness of simulations,

and thus contribute to debate concerning their reliability and

financial value.

UQ goes hand-in-hand with the quest for reproducibility.
We should always keep in mind the fundamental principle

that scientific results are reproducible. If we cannot state the

certainty with which we believe a result, we cannot assess

its reproducibility. If our results cannot be reproduced, what

value do they have?

UQ is an evolving field, but the underlying principles are

not expected to change. We intend that this article will be

updated to include best practices across an ever-broadening

array of techniques, but even so, individual studies may re-

quire some adaptation and creativity. It is fair to say that UQ

is a practitioners’ field. You know your data best and should

be able to assess its quality based on fundamental statistical

principles and (variations of) the approaches described here.

As a final note, we encourage readers to comment or add

to this guide using the issue tracker of its GitHub repository

[https://github.com/dmzuckerman/Sampling-Uncertainty].
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