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Recent NMR experiments and molecular dynamics simulations have indicated that rhodopsin is preferentially
solvated by omega-3 fatty acids compared to saturated chains. However, to date no physical theory has been
advanced to explain this phenomenon. The present work presents a novel thermodynamic explanation for
this preferential solvation based on statistical analysis of 26 100 ns all-atom molecular dynamics simulations
of rhodopsin in membranes rich in polyunsaturated chains. The results indicate that the preferential solvation
by omega-3 chains is entropically driven; all chains experience an entropic penalty when associating with the
protein, but the penalty is significantly larger for saturated chains.

Over the past 25 years, a large number of studies have
demonstrated the importance of polyunsaturated fatty acids
(PUFAs) to human cognitive and visual development.1 Similarly,
several different experimental techniques and molecular dynam-
ics simulations have demonstrated that membranes rich in
PUFAs have physical properties very different from more
saturated membranes;2-5 polyunsaturated chains are very flex-
ible, leading to low order parameters and short correlation times.
These properties in turn modulate the behavior of proteins
embedded in them.6-9 For example, the photocycle kinetics of
rhodopsin, the G-protein coupled receptor (GPCR) responsible
for dim-light vision, are greatly enhanced by the presence of
docosahexaenoyl (DHA) chains,10 while several simulations
have demonstrated enrichment of polyunsaturated chains at
rhodopsin’s surface.11-13 Although recent work12 has suggested
functional implications for this behavior, at present no theory
has been advanced to explain the physical origins of this
behavior. We present here a statistical analysis of lipid chain
conformations accumulated from 26 independently constructed
100 ns all-atom molecular dynamics simulations,12 which
suggests a thermodynamic explanation. The results indicate that
the phenomenon is entropically driven; all chains pay an entropic
penalty to interact with the protein, but the penalty is signifi-
cantly smaller for DHA than for a saturated chain. Although
there is a partially compensating enthalpic effect, the net result
is a preference for DHA of roughly 0.5-1.0 kBT per chain.

The raw data for this work was derived from a series of 26
molecular dynamics simulations. Each simulation contained a
single rhodopsin molecule embedded in a 99-lipid membrane
containing a 2:2:1 molar ratio of 1-stearoyl-2-docosahexaenoyl-
phosphatidylethanolamine, 1-stearoyl-2-docosahexaenoyl-phos-
phatidylcholine, and cholesterol. Each lipid contained an 18-
carbon saturated chain (STEA) at the sn-1 position and a 22-

carbonω-3 polyunsaturated chain (DHA) at the sn-2 position.
All of the simulations were run for roughly 100 ns, with the
first 20 ns discarded as equilibration. Each simulation started
with identical protein coordinates, while the membranes were
constructed independently using lipid structures taken from a
previously generated library (for details see Supporting Informa-
tion and ref 12).

Figure 1 shows the mole fraction for the three major
membrane components (DHA, STEA, and cholesterol), com-
puted as a function of the signed distance to the protein surface
(see the Supporting Information for ref 13 for details). The data
confirm what was seen in previous simulations: the concentra-
tion of DHA is greatly enriched near the protein surface, while
the STEA chain is depleted. The mole fraction has been
normalized to 1, while the absolute population of chain atoms
is very small at distances less than-5 Å. The depletion of
cholesterol at the surface and slight enrichment 5-10 Å away
are also consistent with previous work.

We begin the thermodynamic analysis by defining a set of
discrete states for the lipid chains. For the saturated chains, this
was done by classifying each torsion into one of three states
(trans, gauche+, and gauche-), resulting in a vocabulary of
314 states. Since the vast majority of these states are poorly
populated, we chose to aggregate consecutive torsions and
defined three new states (both trans, both gauche, and mixed),
which reduces the number of states and improves the quality
of the statistics. The situation is somewhat more complex for
DHA; the double-bonded torsions are locked in a single
conformation and thus make no contribution to the chain
statistics. The saturated torsions are significantly altered by the
presence of neighboring double bonds, and contain only two
states (skew+ and skew-) with broad minima and a small
barrier between them.2,3 This set of states is not unique, and
other definitions are possible (e.g., via clustering from simulation
data). However, the present approach is simple, independent of
the force field and simulation conditions and easily transferable
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to other lipid species, such as monounsaturated chains. More-
over, the isomeric state approximation has long been used in
mean field models of membrane structure, including analyses
of structural perturbations due to inclusions such as transmem-
brane domains.14 Given a discrete vocabulary of statessi, it is
possible to compute the probability distribution of chain states
P(si) from a molecular dynamics simulation. We can then
compute the Gibbs entropy as

Further, if we also know the probability distribution for the
chains in a bulk environmentP*(si), we can also compute the
relative entropy of the two distributions, which was identified
by Qian15 as the free energy to perturb the distribution

For purposes of this analysis, the chain state distribution for
lipids 16-18 Å from the protein surface was used to represent
the unperturbed lipid state. This range was chosen because it is
far enough from the protein surface that the lipid isomerization
is likely to be relatively unperturbed, but not so far that there
are too few lipids for good statistics. The results are not
particularly sensitive to the choice of which lipids are used to
computeP*(si). With the relative free energy and absolute
entropy known, we can also compute the relative chain enthalpy
up to an arbitrary constant. This constant may not be the same
for the two chain species considered here.

The main distinction between previous theoretical approaches
and the present work is the role of the distribution of chain
states. For example, in most mean field models, this distribution
is the primary result, determined by the theory combined with
specific boundary conditions (e.g., a hydrophobic cylinder model
for a membrane protein),9,14,16-20 while in the present work these
distributions are determined in advance by explicit all-atom
simulations.

The results of this analysis are shown in Figure 2. Part A
shows the chain free energy as a function of distance to the
protein surface. The free energy curves for both species rise as
they approach the protein, but the STEA curve increases by
roughly 0.4 kcal/mol more. Part B shows the entropic contribu-

tions to the free energy; the curves are qualitatively similar,
but the differences between STEA and DHA are magnified,
indicating that the phenomenon is entropically driven. The
relative enthalpy, shown in Part C, behaves differently. The
DHA enthalpy is essentially independent (within statistical
uncertainty) of its location, while the STEA enthalpy drops
somewhat upon association with the protein. Interestingly, the
favorable change in enthalpy occurs despite a 5-fold decrease
in the probability of the all-trans state, which is the most likely
chain state at all distances.

The energetic degeneracy of the skew+ and skew- states of
DHA means that the energy landscape for DHA is quite flat,
while by contrast the trans state of STEA is roughly 0.5 kcal/
mol more favorable than the gauche states. This accounts for
the difference in the enthalpy curves; since all allowed DHA
states are roughly equal in energy, the only mechanism for an
enthalpy change would be differences in DHA environment
packing interactions as reflected by changes in the chain
statistics. By contrast, a small increase in the number of trans
torsions (roughly 1 per chain) or decrease in intrachain strain
would be sufficient to explain STEA’s enthalpy changes. It is
important to note there are other possible sources of enthalpy
differences, e.g., variations in protein-headgroup interactions.
These factors contribute to the probability distributions observed
in the molecular dynamics simulations and thus, in principle,
are implicitly captured as the effective enthalpies of various
chain states. However, some information may be lost in the
preaveraging inherent in the definitions of the chain states, such
as variations in energy due to overall lipid rotation. Unlike other
theoretical approaches, where the chain enthalpies are directly
specified by the model, the present approach treats chain
enthalpy as a derived quantity, mixing internal energies and
environmental effects indiscriminately.

It is not surprising that associating with the protein is
entropically unfavorable, since the protein is a rigid impenetrable
object on the lipid isomerization time scale; the difference in
time scales means that the lipid must adjust to the protein shape,
with the result that certain fluctuations are suppressed. The

Figure 1. Mole fraction of the membrane components as a function
of distance from the protein surface. The mole fraction is computed
on an atomic basis. The distance to the surface is the signed distance
used previously.13 Error bars are the statistical uncertainty, computed
as the standard deviation across the individual simulations. Solid black
lines are the expected mole fractions for a uniform distribution.
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Figure 2. Chain thermodynamics as a function of distance to the
protein surface. Part A shows the free energy for the chain, relative to
the bulk distribution. Part B shows the absolute chain entropy, multiplied
by -T, to make the units kcal/mol. Part C shows the relative chain
enthalpy, computed by summing the curves from Parts A and B. Error
bars are the statistical uncertainties, computed as the standard deviation
of the values computed from the individual simulation. The distance
to the surface is computed as defined previously.
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enormous flexibility and energetic degeneracy of DHA allows
it to accommodate this gracefully, as indicated by previous
simulations which showed that even tightly bound DHA chains
isomerize and reorient at roughly the same rate as in bulk lipid.13

By contrast, the more constrained STEA chain has a much
smaller number of states which can be populated in the presence
of the protein. Perhaps, a cell membrane could reduce this
entropic penalty by pre-ordering the chains, for instance by
including cholesterol in the membranes; this would then work
to increase the stability and solubility of membrane proteins.

This work suggests a number of questions to be answered
by future calculations and experiments. First, how general are
the effects observed? The present simulations consider only one
membrane protein in a specific (if biologically relevant)
membrane environment, one containing a mixture of two
headgroup types and cholesterol. Given that cholesterol is known
to preferentially associate with saturated chains,21,22 it is worth
considering how the results might differ if the membrane
composition were varied. Second, is the association between
DHA and rhodopsin related to the beneficial effects of dietary
PUFAs? Given that many GPCRs, including rhodopsin, are
found in membranes enriched in PUFAs, this would appear to
be a fruitful avenue for future pursuits, especially as structural
information becomes available for more GPCRs.
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