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ABSTRACT: Understanding the functions of biomolecules requires insight not only from structures but from dynamics as well.
Often, the most interesting processes occur on time scales too slow for exploration by conventional molecular dynamics (MD)
simulations. For this reason, alternative computational methods such as elastic network models (ENMs) have become
increasingly popular. These simple, coarse-grained models represent molecules as beads connected by harmonic springs; the
system’s motions are solved analytically by normal-mode analysis. In the past few years, many different formalisms for performing
ENM calculations have emerged, and several have been optimized using all-atom MD simulations. In contrast to other studies,
we have compared the various formalisms in a systematic, quantitative way. In this study, we optimize many ENM functional
forms using a uniform data set containing only long (>1 μs) all-atom MD simulations. Our results show that all models once
optimized produce spring constants for immediate neighboring residues that are orders of magnitude stiffer than more distal
contacts. In addition, the statistical significance of ENM performance varied with model resolution. We also show that fitting long
trajectories does not improve ENM performance due to a problem inherent in all network models tested: they underestimate the
relative importance of the most concerted motions. Finally, we characterize ENMs’ resilience by tessellating the parameter space
to show that broad ranges of parameters produce similar quality predictions. Taken together, our data reveal that the choice of
spring function and parameters are not vital to the performance of a network model and that simple parameters can by derived
“by hand” when no data are available for fitting, thus illustrating the robustness of these models.

1. INTRODUCTION
Structural changes in proteins are vital to activation and
regulation, and many proteins function via conformational
rearrangements that involve displacing large pieces of the
molecule. These concerted or global motions often occur on
the microsecond to millisecond time scale, making their study
by all-atom computational methods intractable to all but a few
research groups with highly specialized resources.1−3 However,
insight into protein dynamics is valuable, and even approximate
interactions can help guide experiments and tailor hypotheses.
For this reason, elastic network models (ENMs) have become
very popular.4 ENMs are a class of simple models for protein
motion, where the system is represented as a network of beads
interconnected by harmonic springs with lengths matching
those found in the protein’s native state; usually, the system is
coarse-grained by only representing the Cα’s of a protein. By
applying normal-mode analysis (NMA) to this model, one can
extract the collective motions of the system with minimal
computational investment. Network models have garnered
much attention due to their success in predicting global
motions.5−13 They can also be a practical aid in designing and
addressing the feasibility of experiments; for example, these
models have proven useful in evaluating the functional motions
of proteins6−9,14−16 as well as refining structural data.17,19

Notably, because the normal modes of motion are solved
analytically, there is no statistical error in their predictions, a
problem that generally plagues molecular dynamics.20

ENMs’ ease of implementation and computational efficiency
makes them a suitable starting point for many structural
studies; however, their utility is limited in some areas due to
their simplicity.19,21,22 To counter this lack of detail, numerous
groups have developed features designed to augment the

predictive power of ENMs.23−34 We explore several such
methods of improving ENMs while utilizing long molecular
dynamics (MD) trajectories to evaluate each model’s efficacy.
Specifically, we examine the performance of different spring
functional forms and resolutions, systematically analyzing their
performance after fitting to simulation. For this study, we will
use the anisotropic form of the network model first described
by Atilgan et al.23

Historically, the performance of ENMs has been validated by
comparison to crystallographic B-factors. However, this is a
limited comparison since B-factors at best describe the
flexibility of different regions of the proteins, usually isotropi-
cally. By contrast, the ENM-NMA provides far more
information, describing the set of coherent motions available
to the system, as well as their relative amplitudes. For this
reason, we prefer to compare to molecular dynamics
simulations, applying principal component analysis (PCA) to
the trajectories to extract analogous information;35 the
eigenvectors have an analogous meaning in PCA and ENM-
NMA. The eigenvalues have different meaningsmagnitude in
PCA and frequency in ENM-NMAbut given the harmonic
nature of ENMs, one can simply invert the frequencies
obtained from ENM-NMA to give a unitless measure of the
relative magnitude of motion. In the current study, we will
compare harmonic NMA and quasi-harmonic PCA eigende-
compositions15,36,37 (details of this comparison are outlined in
section 2.2).
Recently, there have been many articles aimed at refining the

functional form of the spring contacts in network models using
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MD. This is a worthwhile undertaking as all-atom MD is
considered the gold-standard among molecular simulation
techniques. However, in each case, short simulations were used,
leading to concern about the statistical quality of the
data20,35,38−40 as well as systematic errors.35 For this evaluation,
we chose to use a smaller parametrization set of three proteins
for which we had long trajectories available (each greater than 1
μs in length). We hypothesized that fitting long trajectories was
vital since it is precisely the slow motions that we extract from
the NMA of ENMs. In a recent publication, however, Liu et al.
suggested that simulations spanning a range of 2 orders of
magnitude produce similar dominant motions.41 This is an
interesting result that cannot be overlooked; however, they
consider only the most dominant motion, as opposed to
comparing the whole fluctuation space, which was done in the
current study. We previously showed that fitting to short
simulations leads to systematic errors which manifest in the
eigenvalue spectra.35 This result will be further explored in the
present manuscript.
We also evaluate the effects of varying model resolution.

ENMs were originally developed as a lower-resolution
alternative to all-atom NMA.37,42,43 Each residue is typically
represented by one bead placed at the Cα position, but
occasionally the system size or level of detail restrains this
decision. Several models exist for altering resolution,19,26,44 but
for this study we decided on two simple variations to extract a
trend. While performance varied, the new resolutions were
capable of predicting motions with a similar fidelity to the
standard model.

2. METHODS

Many variants of the basic ENM method have been published,
including a variety of functional forms to define the spring
constants,24,25,27,30−33,45 several levels of resolution,19,26,44 and
methods of interfacing with the surrounding environment.21

There have also been many attempts to refine these models
based on crystallographic B-factors16,28,46 and by comparison to
all-atom MD.30−33,35,36 In the present work, we parametrize
spring functions using only long MD simulations.
2.1. Elastic Network Models. ENMs are constructed from

a network of beads connected by Hookean springs. These
beads are typically located at the Cα’s of each residue when
studying proteins. In the current study, average structures were
calculated from the MD trajectories using an iterative
alignment.47 Formally, this network of interactions is described
by the following potential:

= ° − °U k R R R( )( )ij ij ij ij
2

(1)

where Rij is the distance between two particular beads, i and j,
Rij° is their equilibrium distance, and k(Rij°) is a variable spring
function. The input structure is designated as the relaxed
position of all the springs, making it the global minimum by
definition. The functional form of k(Rij°), or the spring
function, can be defined by one of several formalisms. In
addition to the descriptions below, explicit definitions of all
spring functions can be found in the Supporting Information.
In the standard ENM, this spring function simply identifies

connections. Two beads are designated as connected if they are
within a cutoff distance, Rc, and not connected otherwise.
Formally, this is defined by the Heaviside function:
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This is the simplest spring function, but it has a few
significant weaknesses. First, we intuitively expect that the
interactions between distant residues should be weaker than
interactions between adjacent ones. Although this is captured in
an approximate way by the use of a simple cutoff, one could
arguably improve the behavior by dispensing with the cutoff
and making the spring constant a smoothly varying function of
the minimum energy distance, Rij°. Moreover, this resolves a
numerical instability found in the pure cutoff approach: if the
cutoff is too short, then certain beads may not have enough
interactions resulting in underdetermined dynamics. In that
case, the resulting eigendecomposition will fail.23

One example of a spring that varies smoothly is an
exponentially distance-dependent function:

° = − °k R aR( ) exp( )ij ij (3)

Here, α is an adjustable scaling factor. This function connects
all beads in the model while weighting the “stiffness” of the
spring by the distance between beads. Several network models
use this form (in part), including those introduced by Hinsen,48

Kovacs et al.,25 Moritsugu and Smith,30 Lyman et al.,31 Orellana
et al.,33 and Yang et al.32

A similar, more detailed model was proposed by Hinsen and
co-workers.24 In this formalism, referred to as HCA, beads
closer than the distance Rc are connected by a linearly distance-
dependent spring, while beads outside the cutoff are scaled by a
power decay:
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Here the parameters a, b, c, and d in addition to Rc are all
adjustable.
Other methods explicitly take the chemical structure of the

molecule into account by using different spring functions for
virtual “bonded” interactionsthose between residues adjacent
in sequencethan for “nonbonded” interactions. An example
similar to that of Hinsen et al. would be
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Here, one other small difference was introduced; instead of
scaling “bonded” terms by distance, they are all given the same
stiffness, k1. In addition, multiple levels of connectivity can be
implemented. For instance, the REACH30 method uses virtual
bonds, angles, and torsions, connecting first, second, and third
nearest neighboring Cα’s, respectively, followed by a non-
bonded term.
Any of the above spring functions can be applied to eq 1,

defining the potential energy between two beads. This is done
for all pairs of beads in the system, and the resulting Hessian is
then computed. The normal modes of this system can be
solved by an eigendecomposition; the eigenvectors represent
the directions of motion, and the eigenvalues represent their
associated frequencies. A more detailed description of this
diagonalization has been outlined previously (see for example
refs 4, 23, and 49). In this work, all network models were
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implemented using the LOOS “ElasticNetworks” package
(freely available at http://loos.sourceforge.net).50,51 LOOS is
a lightweight structure analysis library that reads all major MD
model and trajectory file formats.
2.1.1. Varying the Resolution of ENMs. While network

models are generally abstracted to Cα resolution, we
implemented and validated a higher and lower resolution as
well. These can be used to fit the scope of a particular project,
either looking for more subtle details19 or predicting the
motions of a very large system.6−8,14

Our higher resolution model incorporates a second bead per
residue positioned at each side chain’s center of mass (CoM) as
previously employed by Bahar and Jernigan52 and Zheng.19 The
lower resolution model uses a single bead for every two
residues placed at the center of mass of the pair. Throughout
this manuscript, we will refer to these as the two-bead per
residue model and one-bead per two-residue model,
respectively.
We applied each of the spring functions discussed above to

all three resolutions. For models that take connectivity into
account, we included bonds between neighboring Cα’s and
from each Cα to its side chain bead.
2.2. Validating Against Molecular Dynamics Simu-

lations. To evaluate the normal modes of the network models,
we compared them to microsecond-scale all-atom MD of three
G protein-coupled receptors (GPCRs): rhodopsin (RHOD in
figure legends), β2 adrenergic receptor (β2AR), and cannabi-
noid receptor 2 (CB2). These simulations were published
separately and were also used in our prior ENM studies.35,53−56

Briefly, the rhodopsin simulation contained 49 1-stearoyl-2-
docosahexaenoyl-phosphatidylcholine (SDPC), 50 1-stearoyl-2-
docosahexaenoyl-phosphatidylethanolamine (SDPE), and 24
cholesterol molecules and was conducted using the NVE
ensemble. The simulation of β2AR contained 99 1-palmitoyl-2-
oleoyl-phosphatidylcholine (POPC) lipids and was conducted
using the NVT ensemble. The CB2 simulation contained 123
POPC and 38 sn-2-arachidonoylglycerol molecules and was
conducted using the NVT ensemble. All of these simulations
were performed using the CHARMM27r force field for the
lipids57,58 and the CHARMM22 force field for the protein.59

In addition, simulations of two other proteins were used just
for testing our results. Specifically, we analyze a pair of ∼1 μs
trajectories of the A2A adenosine receptor (A2A) in a POPC
bilayer, run by Lyman and co-workers.60 For this analysis, we
concatenated the two simulations, for a total simulation time of
2.2 μs. Additionally, we considered a 472 ns trajectory of opsin
(the apo form of bovine rhodopsin), containing 123 SDPE
lipids; further details of the simulation can be found in the
Supporting Information.
As in previous work, we performed principal component

analysis (PCA) on the trajectories taking advantage of the fact
that PCA produces information analogous to that acquired
from ENMs. While the PCA of a simulation depends on the
covariance matrix and is explicitly not harmonic, its similarity to
harmonic analyses like NMA have been extensively studied in
the literature.15,36,37 The eigenvectors have analogous physical
meanings in the two formalisms: the direction of motion
associated with a particular eigenvalue. The eigenvalues
produce similar, although not identical, information. In the
case of simulation PCA, they represent the relative amplitude of
motion as sampled from a thermalized trajectory, while in
network model NMA, they represent the relative frequencies of
the motion. Because ENMs are explicitly harmonic in nature,

the frequencies can simply be inverted to get effective
amplitudes. In light of the similarities between these two
analyses, we will use the quasi-harmonic PCA of a simulation to
parametrize ENM-NMA results. We compare the results of
PCA and ENM-NMA using the same methods used to
compare two PCA results. In particular, we used the covariance
overlap, because it uses the eigenvalues to account for the
relative contribution of each eigenvector:35,38
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Here, λ represents the eigenvalue associated with the
eigenvector, ν. For the ENM-NMA normal modes, the
eigenvalues were inverted to produce quantities proportional
to relative amplitude. The superscripts A and B denote the two
results being compared while the subscripts i and j indicate this
summation is over all 3N − 6 modes (excluding the three
purely translational and three purely rotational modes which
have zero frequency). The inverted eigenvalues are normalized
across a single eigendecomposition prior to application of eq 6,
such that the total amplitude of predicted motion is identical.
This metric scales from 0 to 1, where 0 indicates that the
eigenvectors are orthogonal and 1 indicates complete overlap of
the eigenspace. It is worth noting that this measure reduces to
something close to the subspace overlap61 if one assumes the
eigenvalue spectrum contains only ones and zeroes. The
parameters obtained from our fitting (using a Nelder-Mead
Simplex62 optimization) are documented (for all resolutions
and spring functions) in Supporting Information Table S4.

2.2.1. Estimation of Equivalent MD Trajectory Length. The
physical significance of a particular covariance overlap value is
difficult to interpret in the absence of context. Therefore, in
order to better understand the comparison between ENM-
NMA results and PCA, we compare the performance of our
ENM-NMA results to the sampling of an MD trajectory. To do
this, we combined the covariance overlap with a block
averaging approach as in previous work.35,40 Block averaging
allows assessment of the sampling quality of a small contiguous
piece of the trajectory relative to the full simulation. Briefly, this
entails splitting the trajectory into many contiguous blocks and
computing the principal components of each block individually.
The average covariance overlap between the principal
components of these blocked trajectories and the full
simulation PCA describes how well the short simulations
reproduce the conformational space explored by the full
simulation. As the length of the blocks increases, the sampling
improves, resulting in higher covariance overlaps.
This method facilitates the appraisal of a network model’s

predicted motions relative to increasing block lengths. The
block averaged covariance overlap is plotted as a function of
block size, and the covariance overlap between the ENM-NMA
and our gold standard (the full-length simulation PCA) is then
overlaid.35,40 The intersection of the block averaging curve and
the ENM-NMA is the point where they have the same
covariance overlap. Following this value to the x axis gives an
estimate of the simulation time required before the trajectory
would predict the system’s motions as well as the ENM.
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2.2.2. Comparing Different Resolution ENMs. In calculating
covariance overlaps of different resolution models, we noticed
that the dimensionality of the system intrinsically altered the
covariance overlap; physically, this is related to the fact that in
higher dimensional spaces it is harder to find two vectors with
large dot products. Thus, we needed to find a means to
compare models with varying resolution on an equal footing.
Our first idea was to compute a Z-score, comparing the

eigendecomposition from a given ENM to that of a number of
randomly generated covariance matrices. However, the random
matrices tended to produce very flat eigenvalue spectra, as
opposed to the rapidly decaying ones produced by ENM-NMA
and simulation PCA. The eigendecompositions from the
random matrices gave large covariance overlaps with each
other, as they would with any other eigenset (set of eigenpairs),
invalidating their use as a control.
To work around the covariance overlap’s sensitivity to the

shape of the eigenvalue spectrum, we randomly scrambled the
eigenvectors such that they were associated with different
eigenvalues. We then performed a bootstrap-like analysis,
generating 10 000 eigensets in this manner and computing their
covariance overlap to the full trajectory. This was used to
compute the mean (Ω̅) and standard deviation (σ) of the
resulting distribution. Finally, we calculated the Z-score for the
ENM’s eigenset using

σ
= Ω − Ω̅

Z
(7)

3. RESULTS
3.1. Any Spring Function can Perform Well. We

quantified the performance of several different spring functions
and resolutions of network models by fitting to MD
simulations. In order to determine the robustness of the
parametrization, each spring function was fit to the entire data
set (all three proteins) and to each trajectory individually. The
results in Figure 1 and Supporting Information Tables S1−S3
show that all spring functions considered yielded models which
predict motions with similar fidelity. Figure 1A shows the
results for spring functions parametrized using the β2AR data.
The covariance overlap between an ENM using the indicated
spring function and the PCA of the MD simulation was plotted.
Panels B and C show equivalent data for rhodopsin and CB2,
respectively. In each case, the data are clustered by model
resolution.
We found that after fitting, all spring functions for a

particular protein and resolution produced similar overlaps.
This result was quite surprising considering the scope of the
literature based on defining and improving spring functions.
Comparison of the various potentials revealed the basis of this
similar performance; as shown in Figure 2, all of the models
produce very strong interactions between each bead and the
first surrounding shell of beads, while more distant interactions
are roughly an order of magnitude weaker. The standard
anisotropic network model, with spring contacts represented by
the Heaviside step function, also follows this pattern: the fitting
produces a very short cutoff such that only immediately
neighboring beads are connected. A close inspection of the
literature reveals this same trend of stiffening close contacts in
the initial development of these methods.24,37,30,31,45 In fact, the
original Rouse model only connected beads neighboring in
sequence.63 Specifically addressing ENMs, Hinsen et al. found
the transition to be 4.0 Å,24 and Moritsugu and Smith gave

virtual bonds a stiffness 2 orders of magnitude higher than
virtual angles.30 The vertical dotted line drawn at 3.8 Å in
Figure 2 represents the mean distance of the first Cα shell.

3.2. Performance Is Affected by Model Resolution. In
examining Figure 1, it is immediately clear that ENM
performance is affected by model resolution. For example,
the two-bead per residue model yielded a lower covariance
overlap in all cases. The overlaps and spring parameters used
are completely documented in Supporting Information Tables
S1−S4. The lower overlap appears to be due to three
phenomena. First, a higher dimensional system attempts to
predict the dynamics with higher detail, in effect giving the
ENMs a tougher problem to solve. Second, side chains often
have more than one rotameric minimum and thus do not obey
the underlying harmonic assumption characteristic of network

Figure 1. Covariance overlap, eq 6, between an ENM result and the
full length simulation PCA for representative spring functions
clustered by model resolution. “Heaviside” refers to the standard
distance cutoff method described by eq 2. “Exponential” form is
defined by eq 3. “HCA” is defined by eq 4, and “constant” implies a
scalable constant value, for instance k1 in eq 5. Spring names separated
by colons (:) represent functions where explicit bonding was used.
Here, Cα’s neighboring in sequence are bonded (n to n + 1). When the
two-bead per residue resolution is used, each Cα bead is bonded to its
own CCoM bead as well. The hierarchy of explicit levels of bonding
takes the form (n to n + 1:n to n + 2:...:n to nonbonded). All values
reported were fit to the full simulation using a Nelder-Mead Simplex62

optimization to maximize the covariance overlap. Data are shown for
(A) β2AR, (B) rhodopsin, and (C) CB2.
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model normal modes. Finally, working in a higher dimensional
space intrinsically reduces the dot products between vectors,
since the entropic penalty for making two vectors parallel
increases dramatically.
This shows up in the PCA results from the MD as well;

Figure 3 shows that the block averaged covariance overlap is
lower than in the one-bead per residue resolution PCA.
However, the drop in ENM overlap when changing resolution
outpaced the new block averaging result. This is illustrated in
Figure 4, which shows how the various ENMs perform for
rhodopsin. In panel A, the similarity to MD of the one-bead per

residue models is plotted over the block averaging result. With
standard resolution, the ENM normal modes sample
approximately as well as a 400−450 ns simulation. This
contrasts with panel B, which shows the two-bead per residue
result where the ENMs reproduce the dominant fluctuations
with the accuracy of about 350 ns of simulation. For all spring
functions tested, the higher-resolution model produced modes
less similar to the MD.

3.2.1. Resolution Impacts Significance of Covariance
Overlap. To assess the statistical significance of the lower
covariance overlaps, we used a standard measure, the Z-score. A
bootstrapping-like procedure was used to generate a large
number of fake data sets with the appropriate dimensionality
and eigenvalue spectrum (see section 2.2.2 for details). The Z-
score analysis showed that the significance of a particular
covariance overlap increased with model resolution. The
aggregate Z-scores are plotted against their respective
covariance overlaps in Figure 5. Here, each datum is a
particular spring formalism. The significance, which is plotted

Figure 2. Spring stiffness as a function of distance. Several formalisms
are shown. “HCA” refers to the function developed by Hinsen et al.24

and defined here by eq 4. “HCA*” is the same function but uses values
obtained from our parametrization.35 “Exponential” is defined by eq 3,
using a = 1.055, which gave the highest covariance overlap in our
simultaneous fit of all three trajectories (see Supporting Information
Table S4) when using the standard one-bead per residue resolution.
“Constant:Exponential” refers to eq 5, after fitting (parameters in
Supporting Information Table S4). Lastly, the parameters from the
realistic extension algorithm via the covariance Hessian (REACH)30

method are shown. Here, springs are split into four hierarchical levels;
virtual bonds, angles, and torsions and a nonbonded term. The
parameters reported in that study were multiplied by a factor of 10 for
easier visualization. The vertical dotted line drawn at x = 3.8 Å
represents mean Cα distance.

Figure 3. Block covariance overlap of rhodopsin for all three
resolutions. The overlap between shorter contiguous simulation
blocks are plotted against the full length trajectory with block length
increasing along the x axis. Both the higher and lower resolution
models (blue and red curves, respectively) converge more slowly than
the one-bead per residue resolution (green curve).

Figure 4. Rhodopsin simulation block covariance overlap plotted with
ENM covariance overlaps. As in Figure 3, overlap is computed against
the full trajectory. Here, ENM covariance overlaps are overlaid using
the same coloring and naming convention as Figure 1. (A) Results of
the standard one-bead per residue resolution, as plotted in Figure 1B,
middle column. After fitting, all spring functions besides the simple
distance cutoff achieved a similar overlap (0.47−0.49) which is
equivalent to the block averaging result for a 375−450 ns simulation.
(B) Two-bead per residue resolution (described in section 2.1.1), as
plotted in Figure 1B, right column. Here, the blocked covariance
overlap converges more slowly, but the ENM overlap is also lower
than the standard resolution model. The covariance overlaps are again
very similar between ENMs, scoring about 0.41, which was comparable
to the average overlap of 350 ns trajectory blocks. Again, the distance
cutoff method performed slightly worse than the more sophisticated
spring functions.
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as a function of covariance overlap, shows that the same overlap
is more difficult to achieve in the higher resolution models.
3.3. Fitting to a Single Protein is Sufficient. Our next

step was to examine ENM dependence on the data set used for
parametrization. To do so, we performed a cross-validation.
Specifically, we fit ENMs to each MD trajectory individually
and used the resulting spring parameters to compute the
motions for the other proteins. For completeness, we also
tested the performance of ENMs fit to the three trajectories in
aggregate. The results, shown in Figure 6, indicate very little
difference in performance regardless of which data set was used
for fitting.
The lack of improvement upon individualized fitting stems

from homogeneity in the spring parameters. As mentioned in
section 3.1, all functional forms tend to favor stiffening the first
shell interactions much more than distal contacts. In fitting eq
2, this was realized by a shortened cutoff distance, which can be
seen in Table 1. In all cases, using the new parameters increased
the covariance overlaps to their respective simulation PCA
results.
Although this result may be due in part to the similarity of

the three proteins used for fitting (all class A GPCRs), there is
some level of generality in fitting network model parameters
at least among the proteins tested. In order to further validate
our parameters, we compared them to simulations of two
additional GPCRs not used for fitting: A2A (2.2 μs in
aggregate) and opsin (472 ns). The opsin case is particularly

challenging, since the structure more closely resembles an
active GPCR structure, while the others clearly model the
inactive forms of the protein. Table 1 lists their covariance
overlaps using the typical 15 Å cutoff (before fitting) and the
cutoffs we obtained via parametrization. We found that the
covariance overlaps for both proteins behave much as the ones
used in the fitting: the fit parameters perform significantly
better than the standard ones in both the one- and two-beads
per residue models, with covariance overlaps comparable to
those for the other proteins. The covariance overlaps of the
one-bead per two-residues model were similar before and after
fitting. This is unsurprising, because fitting only shortened the
cutoff by ∼1 Å.

3.4. Does the Quality of the Fitting Results Depend
on the Trajectory Length? Our previous work suggested that
fitting to short MD trajectories was a flawed strategy because, in
addition to larger statistical errors, short trajectories also differ
systematically from longer ones. Specifically, the eigenvalues
computed from PCA on short trajectories decay more slowly.
Physically, this means that short trajectories systematically
underestimate the importance of the largest motions in the
system. In that manuscript (ref 35), we argued that fitting
against short trajectories would recapitulate these problems and
thus should be avoided.
In the present study, we have shown that the overall quality

of the results, as measured by covariance overlap, does not
seem to depend sensitively on the data used in the fitting. To
clarify the apparent contradiction, we explicitly tested ENM
performance while varying the length of the trajectory used for
fitting.
To do this, the first microsecond of each long trajectory was

split into contiguous pieces, yielding sets of 25, 50, 100, 250,
and 500 ns trajectories. These shorter trajectories were then
used to parametrize the various ENM formalisms in the same
manner described in section 2.2. The resulting parameters were
then used to perform ENM calculations that were compared to
the entire trajectory: 1.02 μs for β2AR, 1.6 μs for rhodopsin,
and 1.9 μs for CB2. Surprisingly, ENMs parametrized against
short trajectories perform nearly as well as those fit to long
trajectories, as shown in Figure 7.
Following the results of parametrizing with short trajectories,

we wanted to further explore why ENM-NMA performance
was not affected by the trajectory length used for fitting. We
previously noted that the power spectra from PCA applied to
trajectories varied systematically with the length of the
trajectory, as seen in Figure 8.35 Panel A shows that as the
simulation time increases, the fractional contribution made by
the lowest mode increases. Note that this is not due to larger
motions by the protein itselfthe RMSD to the starting
structure plateaus within the first 100 nsbut rather due to the
dynamics, as longer time-scale motions are gradually accessed
by the trajectory.
From our previous data, we predicted an improvement of

ENM power spectra after fitting. However, in the present work,
we found that the difference between ENM power spectra after
fitting a short or a long trajectory is negligible. An example is
shown in panel B of Figure 8, using the HCA formalism. Here,
the power spectra averaged over the entire ensemble were
plotted for each of the trajectory lengths tested. This includes
ENMs fit to each of the shorter trajectories along with the those
fit to the full trajectory. The error bars represent one standard
deviation from the ensemble average of shorter trajectories.
The fractional contribution of a particular mode to the overall

Figure 5. Significances of covariance overlaps are dependent on model
resolution. Z-scores are plotted by their covariance overlap with the
full simulation PCA. We first computed the covariance overlap
between ENM-NMA and the simulation PCA. After this, the
eigenpairs were scrambled (as described in section 2.2.2). The new
eigenset was then compared to the simulation PCA. This was done for
10 000 iterations, and the mean and standard deviation of the resulting
covariance overlaps was used to calculate a Z-score for the original
result. Data points in red used the one-bead per two-residues
resolution. Green points represent one-bead per residue resolution,
and blue points represent two-beads per residue resolution. Data are
shown for all three proteins studied: (A) β2AR, (B) rhodopsin, and
(C) CB2.
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motion is plotted for the first 10 eigenvalues in the ENM-NMA,
with modes increasing along the horizontal axis.
Interestingly, the ENM-NMA power spectrum, shown in

panel B, is actually slightly “softer” (the lowest modes
contribute less to the overall motion, and the contribution
decays more slowly) after fitting to longer trajectories. This
trend was seen in all distance-dependent spring functions.
However, the change in fractional contribution of the most
dominant mode is much smaller than the change seen in the
PCA of increasingly longer simulations. By contrast, the power
spectrum of a simulation’s principal components (Figure 8A)
changes drastically with increasing time. Fitting improved the
ENM-NMA power spectrum, but not enough to keep up with
the changes in fractional contribution of the simulation’s
principal components. Thus, it appears that this flaw is
fundamental to the ENM formalism. One possible explanation
is that the lowest frequency modes in the MD trajectories are
transitions between similar substates, as opposed to fluctuations
about a single minimum. These motions are intrinsically absent
in an ENM-NMA formalism, and this absence could account
for the lack of improvement in their performance.
3.4.1. Low Frequency PCA Modes Show Transitions

between Substates. In order to assess whether transitions

appear in the simulation, we histogrammed the projection of
our rhodopsin trajectory onto the lowest principal components
(also called the right singular vectors, RSV).35,64 The peaks in
such a histogram indicate the highly populated conformational
substates along a given mode. Multiple well-distinguished peaks
suggest that there is more than one distinct state along that
vector, whereas unimodal histograms indicate fluctuations
about a single state. The latter case is well-modeled by a
harmonic approximation, while the former is not. As can be
seen in Figure 9, time series for the slowest modes of a one-
bead per residue PCA show evidence of structural transitions
the motions along these modes have multiple peaks. These low-
mode transitions indicate the sampling of separate substates
within the most concerted motions in the trajectory. These are
precisely the kinds of anharmonic motions that ENMs are
unable to predict; even if they accurately detect the direction of
motion, they will not be “aware” of the second energy well and
will thus systematically underestimate the amplitude of the
motion along the mode.

3.5. ENMs Are Robust to Changes in Parameters. In
order to systematically explore the dependence of ENM
performance on the chosen parameters, we explicitly tesselated
the parameter space for one model (HCA) using the one-bead

Figure 6. Simultaneous fitting yields similar accuracy as individual fitting. Here, data are clustered by the protein tested. The four bars in each cluster
represent the different proteins which are used in parametrization. First, all three proteins are fit simultaneously (black); then individual fits to β2AR
(blue), rhodopsin (red), and CB2 (green) are conducted. In general, testing with the protein used for parametrization did not achieve a significantly
higher covariance overlap. Simultaneous fitting also produced ENMs that performed almost as well as individualized fits. The naming convention
from Figure 1 is repeated here. Results of (A) the standard distance cutoff ENM defined by the Heaviside function, eq 2, (B) the exponential
function described by eq 3, (C) the HCA function defined in eq 4, (D) the spring function explicitly distinguishing “bonded” terms, eq 5, and (E)
the spring function distinguishing both “bonded” and “angle” terms from “non-bonded” terms, eq S8.
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per residue resolution. We found the two most important
parameters were the cutoff distance, Rc, and the exponent
weighting, d. Figure 10 demonstrates that the covariance
overlap is quite robust to systematic variation of these
parameters. In Figure 10, the value of the exponential (“d” in
eq 4) is plotted on the vertical axis and cutoff distance (“Rc” in
eq 4) on the horizontal axis, with the resulting covariance
overlap indicated by the heat map’s intensity. This illustrates
that a broad range of parameters (d = 7−14 and Rc = 1−5)
yielded similar overlap with the simulation’s principal
components. This degeneracy in parameters partially explains
ENM’s robustness to the variations we tested, revealing how
many spring functions and even shorter trajectory fits arrive at
such similar results. Interestingly, at Rc < 3.8 Å, nearly all

connections are represented by the exponentially decaying
spring. Thus, even changing the spring function does not
significantly impact the overlap.

4. DISCUSSION
Through the use of long trajectories and an eigenvalue-sensitive
metric, we were able to quantitatively show and clarify the
underlying generality of network model parameters. We found
that this robustness makes network models relatively easy to
parametrize and that the choice of spring function makes little
difference on performance. Interestingly, we also found
essentially no dependence on the length of trajectory used
for parametrization. However, this was largely because the
network models were not able to accurately reproduce the
eigenvalue spectrum of a simulation. Some other variation in
the formalism that is able to better capture this power spectrum
might well benefit from being fit only to long trajectories.

Table 1. Covariance Overlaps Using the Standard Heaviside
Function (eq 2) after Parametrization against β2AR,
Rhodopsin, and CB2 in Aggregatea

covariance overlap

protein 1/2 1/1 2/1

β2AR 0.442 0.490 0.251
rhodopsin 0.380 0.413 0.358
CB2 0.413 0.380 0.374

before fit Rc = 15 Å
A2A 0.361 0.305 0.305
opsin 0.330 0.273 0.222

after fit Rc = 13.93 Å Rc = 8.636 Å Rc = 8.628 Å
A2A 0.362 0.410 0.410
opsin 0.327 0.363 0.296

aThe data are shown for all three resolutions tested, one-bead/two-
residues (1/2), one-bead/residue (1/1), and two-beads/residue (2/1).
A2A and opsin were not parametrized. Covariance overlaps between
these ENM-NMAs and simulation PCA are reported first using a
standard 15 Å cutoff distance and then after using the parameters
obtained by fitting the other three proteins (cutoff distances
indicated).

Figure 7. ENM performance does not depend on the length of
trajectory used for parametrization. The first microsecond of each MD
trajectory was broken into short contiguous pieces (of 25, 50, 100,
250, and 500 ns) and then used to fit the various ENM spring
formalisms. The average covariance overlap across an ensemble ± one
standard deviation is plotted as a function of the trajectory length used
to parametrize the model (note the log-scaled x axis). Here, data are
shown for rhodopsin using the typical one-bead per residue resolution.
Curves show different spring functions, labeled as described in Figure
1. ENMs fit to longer trajectories do not have significantly higher
covariance overlaps.

Figure 8. ENMs fail to accurately reproduce the significance of the
lowest modes of motion. The fractional contribution of the 10 most
significant modes (normalized contribution of the 10 lowest frequency
eigenvalues) are plotted for (A) the PCA of the simulation and (B) the
HCA formalism using rhodopsin. Data are compiled by averaging the
eigenvalues across each ensemble of short simulations, for a given
trajectory length. Error bars indicate one standard deviation in our
ensemble of shorter trajectories. (A) The fractional contribution of the
lowest mode increases with longer simulations. The spectrum from
PCA of the full simulation is shown in orange. The first two modes
contribute more to the variance as simulation time increases. (B)
Network models fail to reproduce the significance of the lowest, most
concerted motions. The key denotes the MD trajectory length used to
parametrize each ENM. Data from the HCA formalism24 eq 4 are
shown. Similar results were obtained with other functional forms. In all
trajectory lengths used for fitting, the ENM under-represents the
importance of the lowest modes. In contrast to the molecular
dynamics PCA, fitting longer trajectories appears to decrease the
significance of these lowest modes.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct3000316 | J. Chem. Theory Comput. 2012, 8, 2424−24342431



4.1. ENMs Rely on Short-Range Contacts. With the
numerous formalisms in print, we set out to measure the
accuracy of each ENM with our set of long simulations. This
data set has the advantage of reproducing fluctuations on a
much longer time scale than was used for earlier ENM
parametrizations, so there is a higher probability of capturing
the slow motions predicted by a network model.
As shown in Figures 1 and 4, the choice of spring function

has little bearing on the performance of a network model.

Figure 2 brings the reason to light: all spring functions tend to
favor much stiffer springs in the first Cα shell. Interestingly,
Tozzini reported this same trend in a recent review of coarse-
grained models for protein motion.65 This evidence argues
against any single functional form and elucidates their most
striking commonality, reliance on the short-range contacts.

4.2. Higher Resolution Models Show Lower Cova-
riance Overlap. Upon fitting higher resolution models, the
covariance overlap decreased regardless of spring function. This
decrease was more rapid than that found in block-averaged
PCA results. In order to characterize this dependency on
resolution, we implemented a Z-score test (using decoupled
eigenpairs to calculate an average overlap as described in
section 2.2.2). Although the absolute covariance overlap
dropped, the statistical significance generally improved. More-
over, the simulation time required to produce equivalent
covariance overlaps is longer for the higher resolution models
(see for example Figure 3), suggesting that the higher
resolution models do perform well.

4.3. Parameters Are Independent from Protein Para-
metrized. Although our parametrization set consisted of only
three simulations, each of a class A GPCR, the result of cross-
validating the parametrization of each protein is important. The
high overlap when cross-validating ENM normal modes with
various proteins reveals two key details. The first is that there is
some level of generality within the proteins we tested, and the
results of our parametrization can be used in the future to study
GPCRs. To this effect, we tested our shorter Heaviside cutoffs
on simulations of two other GPCRs, opsin and A2A. The
results in Table 1 show that the fit parameters perform better
than the defaults for both proteins, although the change is
insignificant for the one-bead per two-residues resolution, and
that the performance for these proteins is comparable to that
for the ones used in the fitting. Thus, we conclude that ENMs
are robust to variations in spring parameters, as illustrated by
Figures 6 and 10. That said, we believe it is important in the
future to extend this test set to other protein architectures,
particularly globular proteins.
Our results explain the ease of finding high overlaps and,

considered together with the rigidity of first shell contacts,
show that any ENM can be quickly parametrized “by hand” by
stiffening those contacts. Another method would be to
discretely represent the first shell separately from all other
contacts, as in eq 5. This is in fact used as part of the REACH30

and edENM33 formalisms, but the separation of more distal
contacts presented in these methods was not found to be
critical to ENM performance.
Taken together, these two pieces of evidence demonstrate

the robustness of network models. In light of these results, we
plotted the parameter space of the HCA formalism. Figure 10
illustrates the broad range of ENM parameters that yield high
covariance overlaps. This demonstrates ENMs’ insensitivity to
the choice of parameters and functional form.

4.4. ENMs Are Insensitive to Trajectory Length Used
for Parametrization. The results shown in Figure 7 were
surprising. Our previous study showed that the fractional
contribution of motions in MD simulations had a strong time
dependence and that network models better reproduced this
curve after fitting.35 While it is clear from Figure 8A that the
power spectrum of a simulation PCA result changes shape with
trajectory length, closer inspection of panel B shows that the
power spectrum of an ENM-NMA result still underestimates
the contribution of the first few modes. Also, Figure 8 showed

Figure 9. Histograms of right singular vectors (projection of motions
onto the eigenvectors) show multiple states in the simulation’s
principal components. These histograms show the normalized
displacement along a given principal component and were constructed
using the PCA of Cα’s from our rhodopsin simulation. Motions along
the (A) first, (B) second, and (C) third components are shown. In all
three plots, multiple peaks are present.

Figure 10. A broad range of parameters are capable of yielding high
overlap with simulation. The parameters d and Rc of eq 4 were
systematically varied and compared to the PCA of the full length
simulation of rhodopsin, using the covariance overlap metric, eq 6.
Data shown used the standard one-bead per residue resolution. This
revealed a large area of high overlap (from roughly d = 6−14 and Rc <
5 Å).
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that the power spectra of ENM-NMAs fit to different length
trajectories varied little. Therefore, it appears that the
parametrization improves overlap in a manner independent
from the actual trajectory fit. This revealed a flaw inherent in all
network models we parametrized: they were unable to correctly
predict the relative importance of the lowest-frequency modes
of long simulations. One possible explanation is shown in
Figure 9. The first three principal components of the
simulations contain transitions (data shown for rhodopsin).
ENM-NMA, which uses a harmonic representation, is unable to
predict such motions. In the future, an ENM that could
accurately describe the power spectrum of a long simulation
would likely benefit from fitting to only long trajectories. In this
respect, the “double-native” Go̅ model proposed by Zuckerman
is quite intriguing.66

In addition, incorporating more simulations of diverse
molecules into this study without relaxing our restriction of
trajectory length may improve our interpretation. GPCR
transmembrane regions are quite rigid, so including other
proteins would further elucidate the behavior of eigenvalue
contributions. Including different classes of proteins would also
be significant, as our results showed a very general trend in
fittingnamely, stiffening the first shell contacts.

5. CONCLUSIONS

We evaluated many formalisms present in the elastic network
model literature using a set of long (each > 1 μs) molecular
dynamics simulations. The principal components of these
simulations were the basis for comparison, evaluation, and
fitting of network models. Fitting was preformed using an
eigenvalue-sensitive metric, the covariance overlap, in order to
capture the relative amplitude of motions present in both
systems. Somewhat surprisingly, all of the formalisms showed
roughly equivalent performance regardless of the data used for
parametrization. This result could be viewed as disappointing
sophisticated efforts to improve the models are largely
unsuccessfulor as informative due to the similarities in
parameters between functional forms. Our results showed that
fitting caused all formalisms to assign strong interactions
between first shell contacts and much weaker interactions for
longer range contacts.
This led us to tessellate the parameter space in several

models. We found that the spring parameters were fairly robust
with broad ranges yielding high covariance overlaps. Therefore,
we conclude that while significant improvement can come from
fitting the spring parameters, the formalism complexity has little
bearing on the actual accuracy of the model. In addition, a high
performance parametrization can likely be obtained easily by
assigning stiff connections between Cα’s neighboring in
sequence and much weaker connections to more distal
contacts.
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