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ABSTRACT: Molecular dynamics (MD) is a powerful tool for understanding the fluctuations of biomolecular systems. It is,
however, subject to statistical errors in its sampling of the underlying distribution of states. One must understand these errors in
order to draw meaningful conclusions from the simulation. This is becoming ever more critical as MD simulations of even larger
systems are attempted. We present here a new method for determining the extent of convergence that relies on measures of the
fluctuation space sampled by the simulation without any a priori knowledge of states or partitioning of the configuration space. This
method reveals long correlation times, even for simple systems, and suggests cautionwhen interpretingmacromolecular simulations.
We also compare this method with previous efforts to characterize the sampling of MD simulation.

1. INTRODUCTION

It has long been known that molecular dynamics (MD) is
subject to statistical errors introduced by both the temporal
sampling and the scale or length of the simulation. These stat-
istical errors can lead to poor or erroneous estimations of the
distribution of states and hence reduce the accuracy of values
calculated from the simulation. Many biologically relevant ques-
tions that MD attempts to answer require understanding the
statistical uncertainty in measurements derived from the simula-
tion. Ideally, the best way to estimate the error is to run multiple
independent simulations. However, this is not always practical, so
we often wish to determine the error from a single simulation.
The size of the statistical uncertainty (error bars) for these
measurements is intimately related to the number of indepen-
dent samples of the quantity in question that are present in
the simulation. This number is implicitly dependent on the
correlation time for the observable. Estimating the correlation
time therefore leads to an estimate for the uncertainty in the
measurement.

In the simplest case, determining the precision of measure-
ments from the simulation focuses on a scalar quantity or an
observable. In this case, block averaging1 is the gold standard for
determining the statistical error; it works by dividing the trajec-
tory into blocks and computing the standard error of the ob-
servable for each block. As the block size is increased, the error
estimated approaches the true error. However, methods that rely
on a single observable can bemisleading due to coupling between
fast relaxation and other, slower processes.2

In order to safely estimate the standard error, one ought to
focus on the slowest relevant relaxations known in the system. As
such, a number of groups have attempted to develop measures of
global sampling quality. A number of these are based on principal
component analysis (PCA). Balsera et al.3 examined the overlap
between fluctuation directions from different sampling windows
and found that the dominant modes changed, suggesting a lack
of convergence. Amadei et al.,4 in contrast, used the root-
mean-squared inner product for the first 10 directions between

two halves of a 2 ns long simulation for protein L and cytochrome
c551. This measure was applied to pairs of subtrajectories of
increasing size as well as consecutive 50 ps windows and sug-
gested convergence occurring within the subnanosecond regime,
when compared to short (nanosecond-scale) simulations. Hess5

introduced amore detailedmeasure called the covariance overlap
that considers both the directions of fluctuations and their
relative magnitudes. He also presented the cosine content
measure that compares the projection of the trajectory along a
principal component to a cosine. The projection for a diffusive
system will be more cosine-like than a system that has sampled
multiple conformations. Using the covariance overlap between a
trajectory of a protein and all subintervals as well as the cosine
content, Hess found that while there was a suggestion of
convergence on the order of 10 ns for the system used, a longer
simulation was needed to accurately estimate the longest correla-
tion times. Faraldo-G�omez et al.6 used the covariance overlap to
compare consecutive nanosecond blocks as well as blocks of
different sizes (1, 2, 4, 8, and 16 ns) as well as the cosine content
and found that some regions of a protein (such as the membrane-
embedded domains of smaller proteins) can be well-sampled on
the order of tens of nanoseconds. They also found that overall
undersampling leads to imprecise B-factor predictions. Gross-
field et al.7 used the covariance overlap to characterize the
similarity of fluctuations spaces between multiple 100 ns simula-
tions of rhodopsin and found indications of a lack of conver-
gence even with longer simulations. Sullivan et al.8 introduced a
measure of the configuration space sampled by the simulation
and examined both the dimensionality of this space over time as
well as the dependence of the phase space volume with increas-
ingly large windows sampled from the trajectory. Using this
method, transitions between conformational substates were
found to occur on the nanosecond time scale, implying that
longer time scales are required for adequate statistical sampling.
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There are alternative approaches that do not directly consider
the fluctuation directions. Smith et al.9 compared a number of
observables over time, such as intramolecular activation energy,
root-mean-square distance, numbers of clusters, and numbers of
hydrogen bonds. Lyman et al.10,11 used a random partitioning of
the conformation space of the system along with an analysis of
the variance associated with this binning to determine an
“effective sample size” that is related to how well it has sampled
the distributions of states. This method was also applied to
multiple independent simulations of rhodopsin.7

The method we have developed is in essence an extension of
one used previously to analyze the convergence of membrane
proteins7 and is similar in spirit to the blocked covariance overlap
used by Hess.5 The underlying concept is that if a system is well
sampled by MD, then the fluctuation space for sufficiently large
subsets of the trajectory should be very similar. The blocked
covariance overlap method combines the best aspects of two
existing methods: block averaging is the best-of-breed method
for assessing statistical error in a single variable, and covariance
overlap is a powerful tool for assessing similarity of global
fluctuations as a single scalar value.

Here, we present the results of applying this method to long,
state of the art simulations of three different classes of biomo-
lecules, ranging in size from a dipeptide to an integral membrane
protein. In aggregate, we analyze nearly 29 μs of simulation time
from all-atom MD. We show that this method indicates the
quality of sampling in a simulation as well as gives an estimate of
the rate of convergence, within certain limits. We also compare
these results to previous efforts to characterize sampling quality,
in particular, the decorrelation time10 and the effective sample
size11 methods developed by Zuckerman and co-workers. Finally,
we compare these results to the cosine content measure.5

2. METHODS

2.1. Block Average Root-Mean-Square Distance. We used
block averaging1 to assess convergence of the average structure.
Briefly, the entire trajectory is first aligned to an optimal average
structure using an iterative scheme.7 We then divide the trajec-
tory into contiguous blocks. We compute the average structure
for each block, and the root-mean-square deviation (rmsd)
between each average structure is calculated. The standard
deviation for the rmsd at each block size is then plotted. The
plateau, if present, indicates both the error in and the correlation
time for the average structure.
2.2. Principal Component Analysis. The Cartesian coordi-

nates for a structure at a given time point can be thought of as a
3N dimensional column vector, whereN is the number of atoms,
i.e., [x1, y1, z1, ..., xN, yN, zN]

T. The trajectory (or ensemble of
structures) can then be represented by concatenating these
column vectors together forming a 3N� L conformation matrix
A, where L is the number of snapshots in the trajectory. To
compute the principal component analysis (PCA) of A, the
average structure must be removed (i.e., the row-average of A is
subtracted from A). The principal components are then calcu-
lated by finding the eigendecomposition of the covariance matrix
AAT, i.e., U ΛUT = AAT. The eigenvectors (columns of U) give
the direction of fluctuations, in a least-squares sense, and the
eigenvalues (diagonal elements of Λ) give the magnitude of the
corresponding fluctuation. In the case of a protein, or other
complete molecule, it is necessary to first remove global rotations
and translations. We do this by computing the average structure

from the trajectory (described above) and aligning each frame
to it.
2.3. Covariance Overlap. For the proposed method to work,

it is necessary to devise a mechanism to quantitatively compare
two PCA results. This is typically done by comparing the sub-
spaces (i.e., fluctuation directions for a set number of most
significant modes) determined by the PCA. Here, we use the
covariance overlap,5�7 which measures not only the similarity in
the directions of motion (eigenvectors) but also their relative
importance (eigenvalues). This measure ranges from 0, where
the fluctuations are completely dissimilar, to 1, where the
fluctuations are identical. The covariance overlap between two
PCA results is defined as
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where λi

A is the ith eigenvalue from the PCA for ensemble A and
vBi
B is the ith eigenvector from ensemble B.
2.4. Bootstrapping. Bootstrapping is a computational proce-

dure used to determine the statistical error in a measurement.12

The fundamental idea behind bootstrapping is that randomly
drawing subpopulations from a distribution provides many dif-
ferent estimates for a statistical quantity. These estimates can
then be used to estimate the error in themeasure. It is particularly
useful when the full distribution is unknown or complex but one
has a statistical sampling of it.
In MD simulations, each structure is correlated to its neigh-

bors in time. Bootstrapping can be used to remove this correla-
tion from an observable. Structures are randomly drawn from the
trajectory to create an ensemble and the observable calculated.
This is repeated many times with the standard deviation in the
distribution of averages computed becoming an estimate of the
true uncertainty.
2.5. Block Covariance Overlap Method.The first step in the

block covariance overlap method (BCOM) is to align the entire
trajectory with an iterative alignment procedure7 using specific
atoms as reference points (in this work, nonhydrogen atoms for
the small molecules and the transmembrane CR atoms for the
larger systems). Next, the conformation matrix is constructed
from these atoms, and a PCA computed as described in Section
2.2. In direct analogy to block averaging, the BCOM is typically
computed for a range of block sizes, up to half the size of the
trajectory. Given a trajectory with L frames and a block size k, the
trajectory is divided into L/k contiguous blocks. A PCA is then
computed for each block. Within an individual block, there is no
additional alignment performed since the trajectory as a whole is
already in an optimal alignment. However, the average structure
from the block is used in the subtraction for the PCA. The
covariance overlap (eq 1) is then computed against the PCA for
the entire trajectory. In essence, the full trajectory is treated as the
gold standard. The average covariance overlap is then reported
as a function of block size.
The block covariance overlap is then normalized by the value

expected if the trajectory was totally uncorrelated. This value is
determined by bootstrapping13 the blocks, i.e., each block is
created by randomly drawing (with replacement) samples from
the entire trajectory, and the covariance overlap is computed
between the PCA of the block and the overall trajectory. This
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procedure is repeated a set number of times (typically 50) for
each block size, and the average covariance overlap is used to
scale the block overlap data.
The inverse of the bootstrap-normalized blocked covariance

overlap is a decaying curve that can generally be fit by a
3-exponential function, f(t) = k1e

�t/t1 + k2e
�t/t2 + k3e

�t/t3 + 1,
where t1�t3 are different correlation time constants. The 3-ex-
ponential function was determined to give the best fit to the
observed data by fitting 1�4 exponential functions and examin-
ing the residual errors.
2.6. Cosine Content. The cosine content for the first mode

was calculated based on the method presented by Hess.5 In brief,
the trajectory is aligned and divided into multiple contiguous
blocks of a given size, as described above. The eigendecomposi-
tion is computed as previously described. The projection of the
conformation matrix along the first eigenvector is then used to
calculate the cosine content according to

c ¼ 2
T

Z T

0
cosðπt=TÞpðtÞdt

 !2 Z T

0
p2ðtÞdt

 !�1

ð2Þ

where p(t) is the tth element of the projection vector and the
average value over all contiguous blocks is reported.
2.7. Lightweight Object Oriented Structure Analysis Pack-

age. All analyses were performed using the Lightweight Object
Oriented Structure analysis package (LOOS),14,15 an object-
oriented library for creating new analytical tools for MD that
is implemented in C++ . LOOS uses Boost16 and atlas17,18 for
additional functionality and high-performance linear algebra
calculations. LOOS includes a powerful “selection expression”
parser that enables tools to easily select which atoms to operate
on. In addition, LOOS provides support for reading the native file
formats for most major MD packages, including CHARMM,19

NAMD,20 Amber,21 Gromacs,22 and Tinker.23 Also included with
LOOS are over 50 analytical tools, including suites of programs
for computing elastic network model solutions and the con-
vergence analyses presented in this work. LOOS is freely
available from SourceForge (http://loos.sourceforge.net).
2.8. Structural Decorrelation Time and Effective Sample

Size. For comparison purposes, we also applied two previously
published methods developed by Zuckerman and co-workers
for assessing the convergence of MD simulations, which we
believe represent the state of the art in the field. The first method
uses the “decorrelation time” as described by Lyman et al.10

Briefly, this method partitions the conformational space of the
trajectory using a set of randomly drawn “reference” structures

and compares the variance of the histograms of subsets of the
ensemble (using the reference structures) with the expected
variance if the structures were uncorrelated. The second method,
described by Zhang et al.,11 uses the same tesselation of config-
uration space but then clusters the reference “bins” based on the
rates of exchange between the different clusters. This gives an
estimate for the number of uncorrelated conformations found in
the ensemble from which a decorrelation time can be estimated.
Implementations of both tools are available from the Zuckerman
lab Web site (http://www.ccbb.pitt.edu/Faculty/zuckerman/
software.html) and are also available in the convergence suite
in LOOS.14

2.9. Model Systems. Several different systems were used to
assess convergence, ranging from a dipeptide to a set of G
protein-coupled receptors, and are listed in Table 1. The first
systemwas a “toy” system based on Lyman et al.,10 consisting of a
dileucine in implicit water at 500 K simulated in Tinker23 for 1μs,
with structures saved every 100 ps . The second system is a short
hexapeptide derived from lactoferrin B in explicit water;24,25

NAMD20 was used on a BlueGene/P26 to simulate this peptide in
the NVT ensemble at 323 K using CHARMM2219,27,28 with
CMAP28 parameters. Snapshots were saved every 1 ns. We ran
multiple simulations, with 2 lasting approximately 3.1 μs each
and 4 other simulations that are each approximately 4.3 μs long.
For both the LfB6 and the dileucine systems, all heavy atoms
were used in performing alignments and for computing the PCA.
Three different G protein-coupled receptors (GPCRs) were

used as the larger test systems. The details of their construction
have been previously described, but in brief, each consisted of the
GPCR embedded in a lipid bilayer along with explicit solvent.
The first system is a 1.02 μs all-atom simulation of β2AR,

29 the
second is a 1.6 μs simulation of dark-state rhodopsin,30 and the
final system is an approximately 1.9 μs simulation of the CB2
canabannoid receptor.31 For these larger systems, only trans-
membrane R carbons were considered for analysis.

3. RESULTS AND DISCUSSION

3.1. Convergence of the Average Structure. As a trajectory
evolves over time, the estimate for the average structure will
change. This can be the result of new conformational substates
being found or from changes in the relative population of the
existing substates. This variation is particularly important for
methods such as PCA that depend upon the average structure as
a reference point. This dependence can be easily demonstrated

Table 1. Systems Used for Analyzing Convergence

system length (ns) conditions

dileucine 1000 500 K, implicit solvent

LfB6 #1 3164 323 K, explicit solvent

LfB6 #2 3127 323 K, explicit solvent

LfB6 #3 4275 323 K, explicit solvent

LfB6 #4 4275 323 K, explicit solvent

LfB6 #5 4285 323 K, explicit solvent

LfB6 #6 4285 323 K, explicit solvent

β2AR 1023 310 K, explicit solvent and membrane

rhodopsin 1605 310 K, explicit solvent and membrane

CB2 1882 310 K, explicit solvent and membrane
Figure 1. Block averaging of the rmsd between each block and the
optimal global average for the 1 μs dileucine trajectory.
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by randomly perturbing the average structure used in computing
a PCA and then calculating the covariance overlap between the
perturbed and the unperturbed modes. An rms perturbation as
small as 0.1 Å in the β2AR average structure reduces the co-
variance overlap from 1 to 0.92 and an overlap of 0.94 for
rhodopsin and CB2. Therefore, we must first ask at what point is
it reasonable to believe that the average structure has converged
such that its statistical errors no longer perturb the PCA results
significantly. For the case of the 1 μs dileucine simulation,
Figure 1 shows the block averaged rmsd. The rmsd error in the
average structure does not plateau until around 10 nswith an error
of 0.019 Å . This is a higher uncertainty than would be suggested
based on a plot of the running average rmsd (≈0.002 Å) for the
simulation (see Figure SI1A, Supporting Information). The
running average rmsd for the transmembrane CR’s of rhodopsin
is also shown in Figure SI1B, Supporting Information. It appears
to show a convergence at approximately 1.4 μs with an error of
0.025 Å . It is important to note however that the rmsd beyond
the first several hundred nanoseconds is quite small in both cases,
and it would be tempting to determine convergence of the
average structure at this point. The rmsd between each structure
of the rhodopsin simulation and the starting crystal structure is
shown in Figure SI2, Supporting Information. Here, there is a
short plateau at 0.5 μs where the rmsd does not increase,
followed by an increase and a longer plateau at about 1 μs. This
“classical” measure of convergence therefore suggests that the
simulation has “converged” by 1 μs.
3.2. Convergence and Correlation Times. The PCA of an

MD trajectory is defined by both the fluctuations of the system as
well as how well these are sampled. To illustrate this, imagine a
simple model system that has two distinct states. If the system
stays in one well, then the average structure and the fluctuations
about that average will be different from the case where the
system transitions between the two wells. Similarly, once the
simulation samples the true statistical distribution of states (e.g.,
twice as many samples in state one as in state two), then the
average structure and the fluctuations about that average will be
different still. Only once the fluctuation subspaces cease to
change, can we consider the simulation well sampled.
The covariance overlap (eq 1) is a powerful tool for determin-

ing how similar the conformational spaces sampled by two
trajectories are. In contrast to the subspace overlap,32 which
only considers the similarity of directions, the covariance overlap
also includes the relative significance (i.e., power) of each mode.
The covariance overlap also considers all modes, rather than an
arbitrary subset. This is a more stringent test on whether the

subspaces are similar, since it requires a better sampling of the
underlying fluctuations in order for both the directions and the
power spectra to match.
If we wish to say that a trajectory has “converged,” then it is

reasonable to expect that the fluctuations from different, large
subsets of the trajectory should be similar, i.e., have a covariance
overlap that approaches 1. The point at which convergence has
been achieved can then be determined by choosing successively
smaller subsets and determining at what point the covariance
overlap diverges from 1. In practice, the subsets are picked as
contiguous blocks of a given size spanning the trajectory. This
method is what we call the BCOM. It is, in effect, a quantification
of the statistical error present in the MD simulation due to finite
and discrete sampling. The overlap for each block is then
normalized by the overlap value expected were there no cor-
relations via bootstrapping, and the inverse of the resulting curve
is fit to a three exponential function. As the block sizes increases,
this ratio will decay toward 1, where the blocks are long enough
that they are effectively uncorrelated.
Hess5 notes that autocorrelation functions of principal com-

ponents can be fitted with a double exponential function using a
fast and a slow correlation time. Indeed, such a hierarchy has
been seen previously in PCA analysis for large systems and
manifests as a “beads on a string”when visualizing the fluctuation
phase space.29,33 Within a bead, or conformation state, there is a
short correlation time as the local well(s) are explored. The
transition between different beads occurs at a much slower time
scale. In contrast, our method results in three different correla-
tion times, typically at different scales (i.e., fast, medium, and slow
scale). While we could hypothesize that the third time scale is the
time to get a sampling of the distribution of states, we have no
underlying model to justify a triple exponential; fitting with two
exponentials leaves a clear residual, while the residual from triple
exponential appears random.
The covariance overlap from the BCOM and the bootstrapped

BCOM (BBCOM) for the dileucine system is shown in Figure 2.
Both the BCOM and the BBCOM approach 1 after 500 ns. The
BCOM curve rapidly increases to 0.95 around 50 ns and then
slowly increases thereafter. The bootstrapped curve, in contrast,
is very close to its peak value for random sets containing as many
points as 25 ns blocks. These curves illustrate the effect of
correlation within the blocks. The ratio of the BBCOM to the

Figure 2. BCOM and BBCOM for the 1 μs dileucine trajectory. Figure 3. Inverse of bootstrap-normalized BCOM for the 1 μs dileucine
trajectory. A three-exponential function is fit to the curve giving
three different correlation times. The correlation times are t1 = 1.7 ns,
t2 = 16.0 ns, and t3 = 194.3 ns.
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BCOM is shown in Figure 3, along with the best three-expo-
nential fit. The correlation times, determined from the three-
exponential fit, are shown in Table 2. It is quite clear from this
graph that the dileucine system has converged since the ratio
decays to 1 by 500 ns. What is striking in this figure is the
magnitude of the longer time scale for such a simple system—
nearly 200 ns. This is a measure of the simulation time required
to accurately determine the relative populations of the different
states available to dileucine. It is worth noting that this time is far
longer than the average lifetime of any single state. Rather, it
reflects the fact that even a molecule as simple as dileucine has a
significant number of states available to it.

In order to further assess the quality of sampling, we also
performed a decorrelation time and an effective sample size
analysis, as described in Section 2.8. The normalized variance
versus decorrelation time is shown in Figure 4 for three different
step sizes through the trajectory. Each curve converges to 1
at≈0.7�0.9 ns. Similarly, the decorrelation time estimated from
the effective sample size (also described in Section 2.8) is
0.45� 0.53 ns. The decorrelation times and their estimates for
each system are shown in Table 3. It is important to remember
that these two methods are not measuring the same thing as the
BCOM; both of these methods hinge on the rate of interconver-
sion between individual states, which BCOM measures as the
convergence of their populations. Examining the pairwise (all-
to-all) rmsd map (Figure SI3A, Supporting Information), it is
apparent that dileucine has substates that last approximately 1 ns.
Indeed, the pairwise rmsd map is a very simple test that can be
used to give a qualitative assessment of how well sampled the
trajectory is.2,29 However, the off-diagonal blocks, despite having
a low rmsd, are not guaranteed to be structurally similar.
While the decorrelation time (or the rate of transitions

between states) can be quite rapid, the convergence of the
distribution of observables may take much longer. For example,
the dileucine trajectory can be partitioned as above but using
5 bins. A running average of the bin populations is computed and
graphed over time in Figure 5. The majority of the changes in
populations have smoothed out in the first 200 ns or so, with
some variation in bins 1 and 4 that continue until nearly 1 μs.
3.3. LfB6. The LfB6 hexapapetide (RRWQWR-NH2) is a

slightly largermodel system that was simulated in explicit solvent.
As with the dileucine model, all nonhydrogen atoms were con-
sidered in the analysis. The average inverse bootstrap-normalized
BCOM plot for all 6 LfB6 simulations is shown in Figure 6 with
the fit parameters listed in Table 2. There is a short correlation
time of 33 ns with longer correlation times of 200 ns and 1316 ns.
When fit individually, half of the simulations have long correla-
tion times exceeding the largest block size. This accounts for the
variation in the BCOMplot at 1 μs and beyond and is evidence of
a lack of convergence despite being a small system that was
simulated for far longer than is typical for full proteins.
The decorrelation time plots for LfB6 are shown in Figure 7.

The curves for the different step sizes are averaged over all six
simulations. This figure yields an estimated decorrelation time of

Table 2. Fitting of Three-Exponential Curve to BCOM
Results for Different Model Systems

model k1 t1 (ns) k2 t2 (ns) k3 t3 (ns)

dileucine 0.42 1.7 0.10 16.0 0.04 194.3

LfB6 0.19 32.9 0.17 199.9 0.12 1316.3

β2AR 0.76 23.3 0.51 248.9 0.19 2481.2

rhodopsin 2.18 10.0 0.89 47.0 1.24 804.5

CB2 1.69 7.3 0.98 39.1 1.15 934.7

Figure 5. The running average of the population for each bin over time
using 5 bins for the dileucine simulation.

Figure 4. Decorrelation time estimation by plotting σobs
2 (t) for three

different step sizes: 2, 4, and 10. The time point where the curves reach
1 is the approximate decorrelation time.

Table 3. Decorrelation Times As Estimated by Variance Plots
(τd) and fromAutomated Effective Sample Size Analysis (τd0 )

a

model τd (ns) τd0 (ns)

dileucine 0.7�0.9 0.45�0.53

LfB6 40�55 35.6�51.0

β2AR
b 75�90 37.2�46.7

rhodopsinb 130�150 60.3�70.9

CB2b 140�175 76.7�91.2

β2AR
c 90�100 60.5�78.2

rhodopsinc 140�180 120.0�150.5

CB2c 170�230 160.8�188.7
aAll analyses used 20 replicates. The τd for dileucine and LfB6 used step
sizes of 2, 4, and 10, while all other models used 2, 3, and 4. b 20 bins were
used and not all clustering for τ0d resulted in 2 top-level clusters.

c 10 bins
were used and not all clustering for τ0d resulted in 2 top-level clusters.
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40� 55 ns. The average decorrelation time derived from the
effective sample size analysis (using 20 replicates) is approxi-
mately the same, 35.6� 51 ns. This time scale also matches the
short correlation time from the BCOM analysis.

Figure 8A shows the running average of the cluster popula-
tions for a 20 bin partitioning of the first LfB6 trajectory. Here,
the bins are across the x axis with time along the y axis. Color
indicates the deviation of the running average from the overall
average population for each column. Qualitatively, what we find
is that the cluster populations continue changing until approxi-
mately 1�1.5 μs, although there are again variations up to the full
3 μs of the simulation. The time scale of the convergence of these
cluster populations corresponds to the long time scale predicted
by the BCOM analysis of 1.3 μs.
3.4. GPCRs. The three GPCR simulations represent an

application of these methods to large systems of biological in-
terest, with state of the art trajectories ranging from 1 to nearly
2 μs. In order to make the convergence criterion more lenient,
only the transmembrane R carbons were considered in the ana-
lysis, since incorporating the fluctuations of the flexible loops
and the terminii would vastly expand the configuration space of
the systems. The BCOM curve and fit for β2AR is shown in
Figure 9A. The best exponential fit to the data is again a three-
exponential giving three well-separated correlation times of
approximately 23 ns, 250 ns, and 2.5 μs. It is important to note
that the longest correlation time, 2.5 μs, is longer than the largest
block size used in the analysis. Moreover, the final ratio is above
1.2, indicating that the longest blocks still do not appear uncor-
related, which in turn suggests that the system is poorly con-
verged. Interestingly, a previous analysis of the phase space
formed by the first three principal components for β2AR

29 found
the presence of “beads”, indicative of conformational substates,
with an average duration of 252 ns. This time scale is virtually
identical to the medium time scale found by the BCOM.
The decorrelation time and effective sample sizes for β2AR are

shown in Table 3. In this case, the analyses were repeated using
two different numbers of bins for the partitioning of configura-
tion space: 10 and 20 bins. There were an insufficient number of
frames to support larger step sizes (i.e., N = 10) in the decor-
relation time plots, so step sizes 2�4 were used instead. The
estimated decorrelation times for β2AR are 90� 100 ns for
10 bins and 75� 90 ns for 20 bins. The effective sample size
hierarchical clustering did not generally result in two top-level
states (this can occur in this analysis when there are states that do
not interconvert during the trajectory, which is itself a sign that
the trajectory has not converged). In addition, the effective
sample size (Neff) per bin was only slightly greater than 1,
suggesting that the system is not converged and that the resulting

Figure 7. Decorrelation time estimation from σobs
2 (t) for all 6 LfB6

simulations averaged together. The error bars are the standard deviation
across all six simulations. The decorrelation time is estimated as being
between 40 and 55 ns.

Figure 6. The inverse of the averaged, bootstrap-normalized BCOM
plot for all six LfB6 simulations. The error bars are the standard deviation
of the normalized BCOM from all simulations. The correlation times are
t1 = 32.0 ns, t2 = 199.9 ns, and t3 = 1316.3 ns. The t1 correlation time
closely matches the decorrelation time estimated by other methods.

Figure 8. A visualization of the change in cluster populations over time for the first LfB6 trajectory (panel A) and for β2AR (panel B). Color represents
the deviation from the column average.
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statistics are suspect. The estimated decorrelation times based on
Neff are 60� 78 and 37� 47 ns for 10 and 20 bins, respectively.
The running average of the cluster populations for β2AR is
shown in Figure 8B; many of the bins show sharp population
changes well into the simulation, such as bin 1 at nearly 700 ns,
while bin 5 continues to drift until the 1 μs mark, and bin 8 shows
a sudden change at almost 1 μs. The extent of convergence for
CB2 can be seen in the all-to-all rmsd plot in Figure SI3B,

Supporting Information. The only significant cross-peak, indicat-
ing revisiting of conformational substates, occurs at around
1.4 μs, although there are broad regions with some self-similarity,
such as the first 0.4 μs and 0.6� 1.1 μs. In addition, one can
qualitatively discern small blocks along the diagonal whose size is
approximately 100 ns. This again reinforces the challenges of
adequately sampling a large protein system, even with start of the
art, microsecond-scale simulations.
The BCOM, decorrelation time, and Neff for rhodopsin and

CB2 are also given in Tables 2 and 3. In each case, the BCOM
curve never comes close to 1. Rhodopsin plateaus at approxi-
mately 1.7 (Figure 9B), and CB2 reaches about 1.6 (Figure 9C),
indicating neither system is converged. Moreover, the long
correlation time exceeds the largest block size used in the ana-
lysis, further suggesting that the systems have not converged. The
decorrelation time and Neff analyses are somewhat more com-
plicated given the differences between 10 and 20 bins. While the
change in decorrelation time is not that significant, theNeff varies
considerably. In the 10 bin case, the number of top clusters found
is smaller than in the 20 bin case, and it is likely that the larger
numbers are more reflective of the “true” decorrelation time.
Nevertheless, the decorrelation times for all of the GPCRs are
quite long, approaching 100 ns or longer.
While the time scales found by the BCOM and the decorrela-

tion and Neff analysis diverge for the GPCR systems, all methods
indicate that there are quite long time scales involved and that the
number of statistically independent configuration samples, even
in a multimicrosecond simulation, is small. This divergence is
also not entirely unexpected considering that the BCOM is using
a very different approach from the decorrelation time and Neff

analysis. Moreover, since the per bin Neff is very close to 1,
indicating insufficient sampling quality, the estimated decorrela-
tion times are suspect.
3.5. Cosine Content. The cosine content for contiguous

blocks along the first mode is shown in Figure 10. The average
cosine content across all blocks of a given size is plotted, and the
error bars are the standard deviation. Figure 10A illustrates the
cosine content for a converged simulation, the first LfB simula-
tion. The cosine content reaches 0 around 1 μs, suggesting con-
vergence on a slightly longer time-scale than determined by
BCOM (≈900 ns, data not shown). In contrast, Figure 10B
shows the cosine content for the rhodopsin simulation, a
nonconverged simulation. The cosine content begins high and
increases with larger block sizes. Hess suggests that, in practice,
the cosine content can be a useful negative indicator of con-
formational sampling.5 In a simpler form, the cosine content of
the first mode for the entire trajectory can be a simple test to
determine whether a system is undersampled. For example, the
cosine content for β2AR, rhodopsin, and CB2 are 0.78, 0.87, and
0.9, respectively. In contrast, the average cosine content for the
LfB simulations is 0.003.
3.6. Known Unknowns: Suggestion for Practical Applica-

tions of BCOM. There are two tantalizing questions for the
BCOManalysis: How reliably can it indicate when a system is not
converged, and can it predict howmuch longer is required to run
until convergence is achieved? Philosophically, this is a difficult
prospect since it is difficult to know what is not known. It is
always possible that increasing the simulation time will reveal a
new conformation state, and there is no way to know that this
state exists solely by using the previously seen configuration
space. In tests where the trajectories were arbitrarily truncated
and the BCOM performed, the reliability of using the long

Figure 9. Inverse of the bootstrap-normalized BCOM for the simula-
tion of β2AR (panel A), rhodopsin (panel B), and CB2 (panel C). The
longest correlation times are 2481, 804, and 935 ns, respectively, and are
approximately equal or greater than the largest block size, indicating a
lack of convergence.
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time-scale coefficient and the BCOM ratio is low until at least the
average structure begins to converge. Indeed, when the simula-
tion is so small that it stays within a single well, it may in fact
be well sampled within this restricted conformation space—in
effect, convergence is in the eye of the beholder. An alternative
interpretation is that if the simulation is far too short, then there is
no way to know this. Once the trajectories become sufficiently
large, however, more credence can be given to these indicators.
This is not conclusive proof, however. In some cases, the trajec-
tory was truncated before a new state was discovered, resulting in
an apparent convergence (data not shown). In some respects,
however, the BCOM was not incorrect in that given the known
configuration space, the simulation did appear to be converged.
However, once the trajectory was extended and the new state was
seen, it was apparent that the simulation was not close to
convergence. It bears repeating that there is no way to prove a
simulation (or even an ensemble of simulations) has converged
to the correct answer. Rather, one can only demonstrate that the
system has not converged or that it may be converged.
It is important to bear in mind that none of these methods

replace the simpler methods of assessing the simulation’s sam-
pling, such as visually inspecting the all-to-all rmsd of the system,
examining the convergence of the average structure, and the time
series of observables of interest. While it has been repeatedly
shown that these measures are not necessarily indicative of
good sampling quality, they are a simple test that represents a
minimum threshold that any simulation must pass before more
sophisticated methods are employed. Similarly, much can be
learned by plotting the projection of the system along the first
several principal components, and this is typically a computa-
tionally inexpensive analysis.

4. CONCLUSIONS

We have devised a new method for assessing both the quality
of sampling and the rate of convergence for amolecular dynamics
simulation. The method relies on the similarities of the subspace
sampled by the simulation and defined by the system’s fluctua-
tions. This method differs from other approaches in that it relies
on fitting the resulting curves to a three-exponential function
rather than a graphical interpretation. In addition, more informa-
tion is considered in the analysis by using the covariance overlap,
utilizing a wide range of block sizes for partitioning the trajectory
and normalizing the resultant overlaps by a bootstrapped block

sample. Moreover, the hierarchical nature of the different corre-
lation times indicates a longer time scale for sufficient sampling of
the “known” configuration space than is suggested by other mea-
sures. Armed with this knowledge of the correlation times in the
simulation, we can now make assertions regarding the effective
sample size for any observable statistics and hence the statistical
errors that are present in those quantities.

All of the methods investigated in this work suffer when the
simulation is far too short. That is, they require a minimum
sampling quality before one can hope to determine how well
converged or sampled the system is. Even in the case where the
simulation is converged, there is appreciable variation in the
numbers obtained for the correlation and decorrelation times,
although the general time scales are similar. Absent a priori
knowledge of what the fluctuation space should look like, there is
no method known to the authors that can determine an
“unknown unknown,” that is, states that should have been seen
but have not yet been visited by the system. Moreover, many of
these methods for assessing sampling quality are new, and it is
not yet clear under what conditions they perform well and those
under which they fail. Given this, we strongly recommend that all
available methods, ranging from the simple rmsd plots and the
cosine content along the first few modes to the structural
decorrelation analyses and BCOM, be used to assess sample
quality and convergence. These tests are computationally in-
expensive (particularly relative to the cost of running an all-atom
simulation), and implementations are freely available as part of
LOOS. Only in concert, combining Neff with BCOM for
example, can we hope to assert what the statistical error is and
whether or not a simulation is well sampled. We must emphasize
again that despite the improvements in these methods for
assessing sampling quality, there is no substitute for visually
observing the time series, be it torsions or projections along a
principal component to look for multiple transitions.

’ASSOCIATED CONTENT

bS Supporting Information. Three figures: The first shows
the rmsd between the running average structure for time t and
t + 1 for dileucine and rhodopsin. The second shows the rmsd
between the structure at time t and the starting crystal structure
for rhodopsin. The final figure shows the all-to-all rmsd for each
structure in the dileucine simulation with every other structure in

Figure 10. The average cosine content as a function of block size for the first LfB simulation (panel A) and rhodopsin (panel B). The error bars are the
standard deviations across all contiguous blocks of a given size.
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the same simulation as well as for the CB2 simulation. This
information is available free of charge via the Internet at http://
pubs.acs.org/.
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