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Accurate representation of intermolecular forces has been the central task of classical atomic simula-
tions, known as molecular mechanics. Recent advancements in molecular mechanics models have put
forward the explicit representation of permanent and/or induced electric multipole (EMP) moments.
The formulas developed so far to calculate EMP interactions tend to have complicated expressions,
especially in Cartesian coordinates, which can only be applied to a specific kernel potential function.
For example, one needs to develop a new formula each time a new kernel function is encountered. The
complication of these formalisms arises from an intriguing and yet obscured mathematical relation
between the kernel functions and the gradient operators. Here, I uncover this relation via rigorous
derivation and find that the formula to calculate EMP interactions is basically invariant to the potential
kernel functions as long as they are of the form f (r), i.e., any Green’s function that depends on
inter-particle distance. I provide an algorithm for e�cient evaluation of EMP interaction energies,
forces, and torques for any kernel f (r) up to any arbitrary rank of EMP moments in Cartesian
coordinates. The working equations of this algorithm are essentially the same for any kernel f (r).
Recently, a few recursive algorithms were proposed to calculate EMP interactions. Depending on
the kernel functions, the algorithm here is about 4–16 times faster than these algorithms in terms
of the required number of floating point operations and is much more memory e�cient. I show
that it is even faster than a theoretically ideal recursion scheme, i.e., one that requires 1 floating
point multiplication and 1 addition per recursion step. This algorithm has a compact vector-based
expression that is optimal for computer programming. The Cartesian nature of this algorithm makes
it fit easily into modern molecular simulation packages as compared with spherical coordinate-based
algorithms. A software library based on this algorithm has been implemented in C++11 and has been
released. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4930984]

I. INTRODUCTION

Classical molecular mechanics simulations use empirical
potential energy functions, called force fields, to model molec-
ular interactions at the atomic level. Force fields are typically
divided into bonded and nonbonded terms, the latter of which
are usually approximations of electrostatics, dispersion, and
repulsion interactions. The most commonly used models for
the nonbonded interactions are Coulomb and Lennard-Jones
potentials. These potentials are, in general, functions of the
nuclear positions and atomic properties such as the electron
density, the latter of which are called parameters and are deter-
mined from quantum mechanical calculations.

Historically, the parameters for the Coulomb potential are
the so-called atomic “partial charges,” which are fractional
atom-centered charges representing the continuous electron
density. Although the partial-charge model simplifies the cal-
culation and is easy to implement, its failure to reproduce
the molecular electrostatic potential has been known for de-
cades,1–9 especially in the biomolecular simulation field. This

a)Author to whom correspondence should be addressed. Electronic mail:
dejun_lin@gmail.com

issue mainly arises from the fact that molecular orbitals, in
general, are not isotropic in space as implicitly assumed by the
partial-charge model. We refer the reader to recent reviews10,11

on this issue. Most notably, this issue is more pronounced
in the case of a coarse-grained force field, where a group of
atoms are modeled as a super-atom whose partial charges sum
to neutrality. Under this circumstance, the complete loss of
electrostatics between neutral super-atoms has been shown to
cause simulation artifacts.12,13 One intuitive way to improve
the electrostatic model is to include higher order electric multi-
pole (EMP) moments to better represent the electron cloud.
Significant e↵ort has been devoted to the development of force
fields that explicitly represent permanent and polarizable point
atomic EMP moments14–20 as well as continuous Gaussian
EMP moments.21,22 EMP moments have also been used in
recent coarse-grained force fields for proteins23 and lipids.24

Very recently, a polarizable Gaussian atomic EMP model was
used in refining x-ray crystal structure,25–28 where the authors
found that an expansion up to rank-4 EMP (hexadecapole)
moments are sometimes necessary to describe bond electron
density in tetrahedral geometries.

Another concern for calculating molecular potential is
long-range interactions. This is most prominent in evaluating

0021-9606/2015/143(11)/114115/14/$30.00 143, 114115-1 © 2015 AIP Publishing LLC
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the Coulomb potential, although recently there are also re-
ports on the importance of long-range dispersion interaction
in computing fluid-fluid interfacial properties.29–32 One of
the first and yet most popular ways to evaluate the long-
range interactions is Ewald summation and the particle-mesh
(PM) method based on it. The details of this method have
been extensively reviewed.10,33,34 While the formalism for
the PM method in the case of partial-charge model as well
as the implementation has been established for several de-
cades, the equivalent for the case of higher-rank EMP mo-
ments was only developed recently.15,35–37 There are also real-
space methods based on the Wolf summation38 that have
been developed recently39,40 which explicitly incorporate EMP
moments.

While the importance of higher-rank EMP moments in
improving force fields has become more appreciated, the addi-
tional equations beyond the partial-charge model have not
been cast into a easily recognizable form. Also, the formalism
to compute the EMP-EMP interaction energies and forces is
not generalized to encompass the variety of potential energy
functions used under di↵erent situations, especially when addi-
tional, not necessarily complicated, mathematical or numerical
manipulation is needed in treatment of long-range interactions.
For example, the formalism to compute Ewald summation up
to the quadrupole level was originally proposed by Smith41 but
later recast by Aguado and Madden,35 in a completely di↵erent
form and in either case, but neither formalism is readily gener-
alizable to support EMP moments of higher ranks. Moreover,
these formalisms use sparse and obscure expressions that have
to be written out explicitly in computer program, which makes
them di�cult to implement and debug.

The other aspect of the calculation involving EMP is
e�ciency. The canonical tensor-based method for calculating
EMP interaction energies and forces has a vector-matrix-
vector bilinear form and requires populating the central matrix.
However, it is generally not the most e�cient way to first
populate the matrix and then carry out the bilinear contraction
(or vector-matrix multiplication); I will show later that the
algorithm developed here needs significantly fewer floating
point operations to evaluate EMP interaction energies and
forces than several algorithms developed recently where the
central matrix is populated by recursion. Specifically, the
algorithm reported here is about 4 times faster (in terms of
the required number of floating-point operations) than the
McMurchie-Davidson algorithm prosed by Sagui et al.15 and
about 16 times faster than another one proposed by Boateng
and Todorov37 for evaluating the damped Coulomb potential
used in Ewald summation at the hexadecapole level. It is even
more competitive than a theoretically ideal recursion scheme
where only 1 multiplication and 1 addition are needed to
construct each element of the central matrix.

In this study, I summarize the problems in electric multi-
pole-multipole interaction and provide an e�cient algorithm to
evaluate the multipole interaction energies, forces, and torques
in Cartesian coordinates for any kernel function f (r). This
study is based on the work of Applequist42 and Burgos and
Bonadeo43 on Cartesian tensor applied in the solution to Pois-
son’s equation, i.e., the Coulomb potential function. This algo-
rithm is superior to the canonical tensor-based one in terms

of computational e�ciency and has a compact vector-based
expression that makes the implementation in computer pro-
grams very easy. I compare its computational complexity to
that of several recursive algorithms developed recently and
show that the current method is, in general, more e�cient.
A C++11 template library based on this algorithm has been
developed and released.

The rest of this paper is organized as follows: Section II
presents the basics of multipole expansion and multipole inter-
action with a generalization to a wide range of kernel functions.
Sections III and IV present a derivation to an e�cient algorithm
to calculate multipole interactions via any kernel function of
the form f (r) and show that its mathematical expression is
invariant with the kernel function. Sections V and VI provide
insight into how the algorithm works and its novelty, respec-
tively. Section VII shows how one can apply the algorithm to
Ewald summation. Section VIII provides complexity analysis
of this algorithm in comparison to various recursive algorithms
developed recently. In Section IX, I will describe how to imple-
ment the algorithm in computer programs.

II. THE BASIC PROBLEM

First, I refer the reader to the Appendix for an explanation
of the notation I use throughout this paper. The Poisson’s
equation for the electrostatic potential �(r) of a given source
⇢(r) is

� ��(r) = 4⇡⇢(r), (2.1)

where � ⌘ r2 is the Laplace operator. For convenience, I
denote the pair of �(r) and ⇢(r) as

�(r)
Possion�����*)����� ⇢(r). (2.2)

The Green’s function for Equation (2.1) is

G(r) = 1
r
. (2.3)

Now consider a cluster of N sources around a point (called the
electric multipole or EMP site): r

j

2 R3,

⇢ j(r) ⌘
NX

k=1

qk�(r � rk) ⇤ � j(r), (2.4)

where �(r) is the Dirac delta function, � j(r) represents the
“shape” of the source function, and ⇤ denotes convolution.
Since convolution commutes with�, we have for � j

Possion�����*)����� ⇢ j,

� j(r) =
NX

k=1

qk�(r � rk) ⇤ � j(r) ⇤ G(r). (2.5)

Define d jk ⌘ rk � r j 8k = 1,2, . . . ,N so that at a point r

outside the cluster, i.e., |r � r j | > max{|d jk |}, the Taylor series
of Equation (2.5) about (d j1, . . . ,d jN) = (0, . . . ,0) converges,

� j(r) =
+1X

n=0

µ(n)
j · n · r(n)

j �(r � r j) ⇤ � j(r) ⇤ G(r), (2.6)

where · n · denotes n-fold contraction (see the Appendix for
a description of the notation used) and µ(n)

j ,n = 0,1, . . . ,N are
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the Cartesian multipoles at site j,

µ(n)
j ⌘

1
n!

NX

k=1

qjkd

(n)
jk
, (2.7)

with d

(n)
jk

being the n-fold tensor product of d jk:

d

(n)
jk
⌘

a total of n termsz                     }|                     {
d jk ⌦ d jk ⌦ · · · ⌦ d jk (2.8)

andr(n)
j is the order-n gradient (with respect to the coordinates

of site j) operator

r(n) ⌘ r(n)
↵1↵2...↵n ⌘

@n

@↵1@↵2 . . . @↵n
,

with ↵k = x, y or z 8k 2 Z+. (2.9)

Similarly, the electrostatic energy between EMP site j and
another site i is

U(ri � r j) ⌘
⌅

all space
⇢i� j(r)dr =

⌅

all space

+1X

m=0

µ(m)
i · m · r(m)

i �(r � ri) ⇤ �i(r)� j(r)dr. (2.10)

We define a rank-n point EMP operator m j and the corresponding shaped operator m�
j of site j as

m j = m j(r) ⌘
+1X

n=0

µ(n)
j · n · r(n)

j �(r � r j), (2.11)

m�
j ⌘ m j ⇤ � j, (2.12)

so that � j(r)
Possion�����*)����� m�

j as in Equation (2.6) and

U(ri � r j) =
⌅

all space
m�

i � j(r)dr (2.13)

as in Equation (2.10), which means that m j (m�
j ) acts as a point (shaped) EMP density distribution of site j and the electrostatic

energies, forces, and torques between a pair EMP sites can be obtained from that between a pair of charge density distributions
with the charge density replaced with the EMP operator defined in Equation (2.11). For example, the electrostatic energy between
2 point-EMP sites i and j is (by inserting Equation (2.6) into Equation (2.10))

U(ri � r j) =
+1X

m=0

µ(m)
i · m · r(m)

i

+1X

n=0

µ(n)
j · n · r(n)

j Ii j =
+1X

m=0

+1X

n=0

(�1)mµ(m)
i · m · r(m+n)

j Ii j · n · µ(n)
j , (2.14)

where

Ii j = I(ri � r j) ⌘
⌅

all space
�i(r � ri)� j(r � r j) ⇤ G(r)dr =

⌅

all space
(G ⇤ � j)(u + ri � r j)�i(u)du (2.15)

and the force on site i is

F(ri � r j) = �r(1)
i U(ri � r j) =

+1X

m=0

+1X

n=0

(�1)mµ(m)
i · m · r(m+n+1)

j Ii j · n · µ(n)
j (2.16)

and the torque on site i is (see Section S1 in the supplementary material for the derivation57)

T(ri � r j) =
+1X

m=0

+1X

n=0

✏(3) · 2 ·

(�1)m+1(m + 1)µ(m+1)

i · m · r(m+n+1)
j Ii j · n · µ(n)

j

�
, (2.17)

where ✏(3) ⌘ ✏(3)
i jk
= (i � j)(k � i)( j � k)/2 is the Levi-Civita

symbol. In general, we need to evaluate the bi-contraction of
the form

A

(n) · n · r(n+m) f (r) · m · B

(m), (2.18)

where the n-fold gradient of f (r) exists.
For most applications of EMP moments, such as Ewald

sum or the Fast Multipole Method44,45 (FMM), f is a function
of inter-particle distance only. If we restrict f to f ⌘ f (r2), we
can rewrite Equation (2.18) as

A

(n) · n · r(n+m) f (r2) · m · B

(m). (2.19)

In Sec. III, I will develop an expansion of r(n) f (r2) in terms

of a function of r

(n) ⌘
a total of n termsz            }|            {

r ⌦ r ⌦ · · · ⌦ r so that expression (2.18)
can be evaluated in the same expansion in terms of contractions
of the form A

(n) · k · r

(k) and B

(m) · k · r

(k) without the need
to populate the central tensor r(n+m) f (r2). However, I want to
remind the reader here that the definitions of Equations (2.11)
and (2.12) are independent of the linear operator � and its
Green’s function and are valid as long as the Taylor series in
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Equation (2.6) converges. That said, I do assume the linear
operator is translation invariant, which is true for simulations
of particle systems. This means we can apply it to other linear
equations (with appropriate shaping function �(r) to guar-
antee the convergence of Equation (2.15)) such as Yukawa’s
equation,

� (� � 2)�(r) = 4⇡⇢(r),  2 R+ (2.20)

or the Helmholtz equation,

� (� + 2)�(r) = 4⇡⇢(r),  2 R+. (2.21)

III. THE n-FOLD GRADIENT OF f (r2)

The direct approach to evaluating expression (2.19) is
to first populate the tensor r(n+m) f (r2) as a matrix and then
perform a vector-matrix-vector multiplication. However, the
complexity of this approach could be very high depending on

the complexity of calculating r(n+n) f (r2). For example, the
complexity of populating r(n+m) 1

r
in A

(n) · n · r(n+n) 1
r
· n ·

B

(n) is on the order of n6 based on the algorithm published
previously.42

On the other hand, if we can decompose r(n+n) f (r2) into
a total of 2n termsz           }|           {
t ⌦ t ⌦ · · · ⌦ t, where t ⌘ t(r) is a simple function of r, the
order-2n bi-contraction can be split into two order-n contrac-
tions and the complexity is reduced to n3. Although such a
decomposition does not exist, in general, a similar “divide-and-
conquer” approach has been proposed previously for f (r2) = 1

r

using a diagrammatic method to evaluate EMP interactions.43

Here, we take one step forward and generalize the approach to
any function f ⌘ f (r2) where f is a function of the squared
norm of r.

First, we need the help of the following definition:

Definition 3.1. Define r

(n)�(s) as a tensor of rank n + 2s,

r

(n)�(s) ⌘
X

Ps
n+2s{↵1...↵n+2s}

r (n)↵1...↵n�↵n+1↵n+2�↵n+3↵n+4 . . . �↵n+2s�1↵n+2s, (3.1)

where �i j is the Kronecker delta and the sum is over all
the permutations of the set of index {↵1 . . . ↵n+2s} that give
distinct terms and there are a total of Ps

n+2s ⌘ (n + 2s)!/
(2ss!n!) terms. The permutations in the sum guarantee that
r

(n)�(s) is totally symmetric.

The following lemmas are direct applications of Defini-
tion 3.1:

Lemma 3.1. Given a tensor r

(n)�(1) of rank n + 2, as in
Definition 3.1 and one of its index i 2 [0,n + 2], we have the
following equality:

r

(n)�(1) = rir(n�1)�(1) + �ir
(n), (3.2)

where �ir(n) is r

(r )�(1) with a specific index i fixed on �.

Proof. This can be obtained trivially by realizing that the
sum in Definition 3.1 can be split into a sum over index i
attached to r plus another sum where i is attached to �. ⇤

Lemma 3.2.

r↵n+1r
(n) = �↵n+1r

(n�1). (3.3)

Proof. Since r

(n) = r↵1r↵2 . . . r↵n, the chain rules give
us

r↵n+1r
(n) =

↵nX

i=↵1

�i↵n+1r
(n�1) = �↵n+1r

(n�1). (3.4)

⇤
With the help of Definition 3.1 and Lemmas 3.1 and 3.2,

we arrive at the following theorem:

Theorem 3.1. Given a real-valued function f on R�0,
whose n-fold gradient exists, its n-fold gradient can be ex-
panded into

r(n) f (r2) =
b n

2 cX

k=0

2n�kFn�k(r2)r(n�2k)�(k), (3.5)

where
⌅
n
2

⇧
is the biggest integer no larger than n/2 and

Fk ⌘
dk f

d(r2)k
. (3.6)

Proof. We will proceed by induction. Equation (3.5) is obviously true for n = 0 and we have

r(n+1) f (r2) = r↵n+1r(n) f (r2)

=

b n
2 cX

k=0

2n�k(r↵n+1Fn�kr

(n�2k)�(k) + Fn�kr↵n+1r
(n�2k)�(k))

=

b n
2 cX

k=0

(2n+1�kFn+1�kr↵n+1r
(n�2k)�(k) + 2n�kFn�k�↵n+1r

(n�2k�1)�(k)),

where the 2nd equality follows directly from Lemma 3.2. Note that for k = 0 in the sum, the 1st term on the right-hand side is
just 2n+1Fn+1r

(n+1); for k =
⌅
n
2

⇧
, the 2nd term on the right-hand side is just 2n�kFn�k�(k+1) if n is odd and it vanishes if n is even;
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for 0 < k <
⌅
n
2

⇧
, the kth and the k + 1th term can be merged as

2n+1�kFn+1�kr↵n+1r
(n�2k)�(k) + (2n�kFn�k�↵n+1r

(n�2k�1)�(k) + 2n�kFn�kr↵n+1r
(n�2k�2)�(k+1)) + 2n�k�1Fn�k�1�↵n+1r

(n�2k�3)�(k+1)

= 2n+1�kFn+1�kr↵n+1r
(n�2k)�(k) + 2n+1�(k+1)F(n+1)�(k+1)r

(n+1�2(k+1))�(k+1) + 2n+1�(k+2)Fn+1�(k+2)�↵n+1r
(n+1�2(k+2))�(k+1)

which follows from Lemma 3.1. Thus, we have for

n = 2g, g 2 N0, r(n+1) f (r2) =
gX

k=0

2n+1�kFn+1�kr

(n+1�2k)�(k)

and for

n = 2g + 1, g 2 N0,

r(n+1) f (r2) =
gX

k=0

2n+1�kFn+1�kr

(n+1�2k)�(k) + 2n�gFn�g�
(g+1).

In general, we have

r(n+1) f (r2) =
b n+1

2
i

X

k=0

2n+1�kFn+1�kr

(n+1�2k)�(k)

which is Equation (3.5) with n replaced by n + 1. ⇤

Because r(n) f (r2) is totally symmetric, it is more convenient to rewrite Equation (3.5) in its compressed tensor form.
Notice that the non-vanishing terms in r

(n�2k)�(k) are those of the form r (n�2k)(n1 � 2k1,n2 � 2k2,n3 � 2k3) ⌘ rn1�2k1
x rn2�2k2

y rn3�2k3
z ,

where
P3

i=1 ni = n,
P3

i=1 ki = k, and 2ki  ni. The redundancy of this term in the sum Ps
n+2s{↵1 . . . ↵n+2s} is the number of

ways k1 distinct pairs of index ↵i↵ j can be selected from those in ↵1 . . . ↵n which are assigned the value of 1, which is
Pk1
n1 ⌘ n1!/(2k1k1!(n1 � 2k1)!), times that number for k2 and k3. Thus,

r (n�2k)�(k)(n1,n2,n3) =
X

{k ;k1,k2,k3}
Pk1
n1P

k2
n2P

k3
n3r

(n�2k)(n1 � 2k1,n2 � 2k2,n3 � 2k3), (3.7)

where the sum
P

{k ;k1,k2,k3} is over all the combination of k1, k2, k3 whose sum is k. Insert this into Equation (3.5) and we get

r(n) f (n1,n2,n3) =
b n

2 cX

k=0

2n�kFn�kr (n�2k)�(k)(n1,n2,n3) =

h n1
2

i
X

k1=0

h n2
2

i
X

k2=0

h n3
2

i
X

k3=0

2n�kFn�kPk1
n1P

k2
n2P

k3
n3r

(n�2k)(n1 � 2k1,n2 � 2k2,n3 � 2k3).

(3.8)

One can verify that when f (r2) =
q

1
r

2 , Equations (3.5) and (3.8) reduce to the solid spherical harmonics of degree n in

Cartesian coordinates, which is central to EMP interactions and has been given before.42,43 Also, if f (r2) =
⇤ 1

0 exp(�r

2t2)dt,
which is the Boys function of order 0, Equations (3.5) and (3.8) reduce to the Hermite Coulomb integral, which plays an
important role in evaluation of quantum molecular integrals in Gaussian type orbitals theory.46,47 Notice that Definition 3.1
and Theorem 3.1 are independent of the dimension N of r, which means they can be applied to cases N � 3. For example, if
f (r2) = 1/(2⇡)N/2 exp(�r

2/2), Equation (3.5) reduces to the N-dimensional Hermite polynomials.48

The factorization of the derivatives of f in Theorem 3.1 provides a way to evaluate expression (2.18) without the need to
populate the central tensor since r

(n�2k)�(k) is a simple function of r only. This is given in Section IV.

IV. EVALUATION OF THE BI-CONTRACTION FORM

Given Equation (3.5), evaluating expression (2.18) is equivalent to evaluating

A

(n) · n · r

(m+n�2k)�(k) · m · B

(m) (4.1)

for 8k 2 [0,
⌅
m+n

2

⇧
], multiplying by the coe�cients and summing over all k. The terms in expression (4.1) can be split into the

following categories:

1. terms arising from r contracted with A

(n) or B

(m);
2. terms arising from �i j contracted with both A

(n) and B

(m) where i comes from A

(n) and j comes from B

(m);
3. terms arising from �i j contracted with A

(n), i.e., taking A

(n)’s trace;
4. terms arising from �i j contracted with B

(m), i.e., taking B

(m)’s trace.
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If we let lc, ln, and lm be the number of terms in categories 2–4, we arrive at the following expression:

A

(n) · n · r

(m+n�2k)�(k) · m · B

(m) =
X

{k ;lc,ln,lm}
C *

,
m , n

lc, lm, ln
+
-
⇣
A

(m:lm) · Om · r

(Om)
⌘
· lc ·

⇣
B

(n:ln) · On · r

(On)
⌘
, (4.2)

where Om ⌘ m � 2lm � lc, On ⌘ n � 2ln � lc, and the sum is over all lc, ln, lm 2 N0 so that lc + ln + lm = k. The coe�cient
C

⇣
m , n

lc, lm, ln

⌘
⌘ Pln

n Plm
m

⇣
n�2ln
lc

⌘ ⇣
m�2lm

lc

⌘
lc! is the degeneracy of each

⇣
A

(m:lm) · Om · r

(Om)
⌘
· lc ·

⇣
B

(n:ln) · On · r

(On)
⌘

term in
the sum. We can insert Equation (4.2) into (3.5) and (2.19) to get

A

(n) · n · r(n+m) f (r2) · m · B

(m)

=

b n+m
2 cX

k=0

2m+n�kFm+n�k
X

{k ;lc,ln,lm}
C *

,
m , n

lc, lm, ln
+
-
⇣
A

(m:lm) · Om · r

(Om)
⌘
· lc ·

⇣
B

(n:ln) · On · r

(On)
⌘
. (4.3)

Similarly, we can obtain the expansion for the bi-contraction for forces as in Equation (2.16),

A

(n) · n · r(n+m+1) f (r2) · m · B

(m)

=

b n+m+1
2

i
X

k=0

2m+n+1�kFm+n+1�k

" X

{k ;lc,ln,lm}
{1;qn,qm,qr}

C
*...
,

m , n,
lc, lm, ln,
qm,qn

+///
-

r

(qr ) ⌦
⇣
A

(m:lm) · O0m · r

(O0m)
⌘
· lc ·

⇣
B

(n:ln) · O0n · r

(O0n)
⌘ #

(4.4)

and torques as in Equation (2.17),

B

(m+1) · m · r(m+n+1) f (r2) · n · A

(n)

=

b n+m+1
2

i
X

k=0

2n+m+1�kFn+m+1�k
X

{k ;lc,ln,lm}
{1;qn,qm,qr}

"
C

*...
,

m + 1 , n,
lc, lm, ln,
qm,qn

+///
-

r

(qr ) ⌦
⇣
B

((m+1):lm) · O0m · r

(O0m)
⌘
· lc ·

⇣
A

(n:ln) · O0n · r

(O0n)
⌘ #

,

(4.5)

where the inner sum is over all lc, ln, lm,qr ,qn,qm 2 N0 so that
lc + ln + lm = k and qr + qn + qm = 1 and O0m ⌘ m � 2lm � lc

� qm, O0n ⌘ n � 2ln � lc � qn. The coe�cient C
 

m , n,
lc, lm, ln,
qm, qn

!

⌘
⇣

m
qm

⌘ ⇣
n
qn

⌘
Plm
m�qmPln

n�qn
⇣
m�qm�2lm

lc

⌘ ⇣
n�qn�2ln

lc

⌘
lc! is again

the degeneracy. One can verify that Equations (4.3) and (4.4)
in the case of f (r2) =

q
1
r

2 and f (r2) =
⇤ 1

1 exp(�r

2t2)dt are
equivalent to those given by Burgos and Bonadeo,43 and
Smith,41 respectively, although the expression given here is not
limited to those cases.

There are a few things I want to point out here before
changing the topic. First, note that when A

(n) or B

(m) is
traceless, the terms corresponding to ln , 0 or lm , 0 vanish
and Equations (4.3)–(4.5) are then much simpler. When both
A

(n) and B

(m) are non-traceless, one can easily prove that if
and only if r(n+m) f is totally symmetric and traceless would
the following equations be true:

r(n+m) f · n ·TnA

(n) = (2n � 1)!!r(n+m) f · n · A

(n) (4.6)

and

TnA

(n) · n · r(n+m) f · m ·TmB

(m)

= (2n � 1)!!(2m � 1)!!A(n) · n · r(n+m) f · m · B

(m),

(4.7)

where !! indicates the double factorial and Tn is the so called
“detracer” operator defined by Applequist,42 which acts on

a totally symmetric tensor A

(n) to give a totally symmetric
and traceless tensor TnA

(n). In practice, the traceless EMP
moments Tnµ

(n)
j are often used in lieu of µ(n)

j as defined in
Equation (2.7). However, we want to remind the reader here
that thisr(n+m) f , in general, is not traceless and Equation (4.7)
is not necessarily true. It can be proved thatr(n) f (r2) is totally
traceless if and only if

(2n � 2k + 1)Fn�k + 2r

2Fn�k+1 = 0 8k 2 [1,
� n

2

⌫
]. (4.8)

The proof is given in Section S257 but the reader can easily
verify that the Coulomb kernel f (r2) =

q
1
r

2 satisfies this
condition while f (r2) =

⇤ 1
1 exp(�r

2t2)dt does not, the latter
of which is the damped Coulomb potential as used in the
direct-space sum in the Ewald summation method. Second,
some spherical coordinate-based algorithms for calculating
EMP interactions also take advantage of the traceless tensor
when Equation (4.8) is satisfied.36 With that, one would argue
that a spherical coordinate-based algorithm is more e�cient
than a Cartesian coordinate one. However, I want to point
out here that this very same trick in the spherical coordinate-
based algorithm simply manifests itself in the current Cartesian
coordinate-based approach by reducing the number of terms
in Equations (4.3)–(4.5). Since Cartesian coordinate-based
algorithms are generally more straightforward to implement,
most molecular simulation packages use Cartesian rather than
spherical coordinates. Therefore, coordinate transformation at
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every time step is required to use such a spherical coordinate-
based algorithm in most simulation packages. Note that this
transformation involves evaluating a large number of trigo-
nometric functions, which, in general, is at least an order of
magnitude slower than simple multiplication or addition and
incurs a big overhead. Thus, the current algorithm is more
e�cient than the spherical coordinate-based one in terms of
implementation in modern simulation software.

V. INTERPRETATION OF THE ALGORITHM

The tensor algebra shown in Section IV might seem di�-
cult to digest for non-specialist so I also supply an intuitive
explanation. Let us take Equation (4.3), for example. After a
close examination, it is easy to show that the right-hand side
of Equation (4.3) is a series of tensor contractions of the EMP
moments with r

(m+n) (Om and On), with themselves (lm and
ln) and each other (lc). As dot products can be interpreted as
projections between vectors, the tensor contraction here can
be read as the projection of the EMP moments onto r

(m+n),
themselves, and each other. These projections arise from the
contraction of the EMP moments with the r

(m+n)�(k) tensor,
which in turn arises from the application of gradient operator
on r

(m+n) by the chain rule of derivative (see the derivation
from Lemma 3.2 and Theorem 3.1). In fact, the multipole
expansion (right-hand side of Equation (2.6)) is equivalent to
an expansion on the basis of spherical harmonics in Cartesian
coordinates when the kernel function is Coulomb kernel 1

r
,

with each term in the expansion being a projection of the EMP
moment on the spherical harmonic of the same degree. This has
been discussed previously by Applequist.42 Here, the author
generalized such expansion to any kernel function of the form
f (r).

VI. NOVELTY OF THE ALGORITHM

There are three major novelties of the algorithm devel-
oped here. First of all, it shows that multipole interactions
via all kernel functions of the form f (r), i.e., any function
that depends on inter-particle distance, have essentially the
same mathematical expression except for a few coe�cients.
This means the same set of working equations can be used
for a wide variety of kernel potentials, e.g., direct Coulomb
potential, reaction field potential, or the damped Coulomb
potential in the Ewald summation, making it fit easily into
modern molecular dynamics simulation packages for a broad
range of applications.

Second, the number of floating-point operations required
to perform the calculation is minimal as compared to the
recursive algorithms developed previously;15,37 the algorithm
developed here is even faster than the best possible recursion
scheme. The comparison will be given in Section VIII along
with the explanation for why the algorithm is fast. I want to
point out here that this reduction in floating-point operation
has nothing to do with the implementation of the algorithm
but it stems from the fact that the algorithm only takes into
account necessary operations.

Last but not the least, the mathematical expression of this
algorithm is highly compact and modularized, making it very

easy to implement. One can easily cast these formulas into a
set of matrix-vector multiplications, which can be performed
using various high performance linear algebra packages. Also,
a close examination of working equations (4.3)–(4.5) reveals
that the derivatives of the kernel functions are just coe�cients
(Fi) of the tensor contraction and one only needs up to the (m
+ n)th scalar derivatives. These derivatives can be imple-
mented as modules independent of the contraction, making the
codes highly reusable for a wide variety of kernel functions.
The details of the implementation will be given in Section IX.

VII. THE EWALD SUMMATION

The idea of Ewald summation for point charges has been
discussed extensively so I refer the reader to the excellent
reviews for details.33,34 Here, I will apply the same idea to
a system of general EMPs. I again refer the reader to the
Appendix for the notation I use in what follows. Consider a
system of N point EMP m j at position r j, j = 1,2, . . . ,N in a
unit cell with m j defined as in Equation (2.11). The unit cell is
replicated to form a lattice L. The electrostatic energy of the
unit cell is

U =
1
2

NX

i=1

NX

j=1

0X

p2L

⌅

all space
� j,p(r)mi(r)dr, (7.1)

where � j,p ⌘ m j,p(r) ⇤ � j(r) ⇤ G(r) with m j,p(r)
⌘ P+1

n=0 µ
(n)
j · n · r(n)

j �(r � r

j

� p) and the 0 in the 3rd sum
means exclusion of i = j if p = 0. This sum is conditionally
convergent for the interacting EMPs where the sum of the
ranks is less than 2, i.e., for charge-charge, charge-dipole,
dipole-dipole, and charge-quadrupole interaction.49 However,
in practice, the appropriate cuto↵ for rank >2 might be needed
to be very large in order to converge the sum. In fact, it has
been shown that short cuto↵s of dispersion interaction of the
form r�6 could cannot correctly reproduce the fluid-fluid inter-
facial properties.29–32 It is thus reasonable to consider EMP
interaction of rank 5 as long-range interaction. The idea of
Ewald summation is to decompose � j,p into two functions, one
of which decays rapidly in real space while the other decays
rapidly in Fourier space, so that the sum can be evaluated with
relatively small cuto↵s in real and Fourier space. Because of
the linearity of the Poisson’s equation, decomposition of the
potential is equivalent to decomposition of the source density.
The canonical choice of such decomposition is to let � j(r)
= �(r) = �(r) � g↵(r) + g↵(r) as in Equation (2.6), where g↵(r)
⌘ (↵/⇡)3/2e�↵ |r|

2, so that � j,p = m j,p ⇤ G ⇤ (� � g↵) +m j,p

⇤ G ⇤ g↵. Let �d
j,p ⌘ m j,p ⇤ G ⇤ (� � g↵) and �k

j,p ⌘ m j,p ⇤ G
⇤ g↵ so that Equation (7.1) can be rewritten as U = Ud +Uk,
where

Ud ⌘
1
2

NX

i=1

NX

j=1

0X

p2L

⌅

all space
�d
j,pmi(r)dr, (7.2)

Uk ⌘
1
2

NX

i=1

NX

j=1

0X

p2L

⌅

all space
�k
j,pmi(r)dr. (7.3)

The second sum Uk is done in Fourier space (see the Appendix
for a description of the notation used),
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Uk =
|detÃ(2)|

2

k,0X

k2L̃
ĝ↵(k)Ĝ(k)|M̂(k)|2 �Uself, (7.4)

where ĝ↵(k), Ĝ(k), and M̂(k) are the Fourier transform of g↵, G, and M(r) ⌘ PN
i=1 mi(r), respectively. Uself is defined as

Uself ⌘
1
2

NX

i=1

X

j=i

⌅

allspace
�k
j,p(r)mi(r)dr

=
1
2

NX

i=1

X

j=i

+1X

m=0

+1X

n=0

(�1)nµ(n)
i · n · r(n+m)

j

erf(
p
↵|ri � r j |)

|ri � r j |
· m · µ(m)

j , (7.5)

where erf(x) ⌘ 2p
⇡

⇤ x

0 exp(�u2)du is the error function. Uself

is the interaction energy between m j ⇤ G ⇤ g↵ and m j at r j,
which is a non-physical term included in the Fourier series
of Ud and should be subtracted from the sum. The derivation
will be given in Section S3 of the supplementary material.57

Because M̂(k) has a very simple form in Fourier space (see

Section S357), the evaluation of Uk does not involve compli-
cated tensor-tensor contractions and can be done e�ciently
using the Fast Fourier Transform (FFT) technique.15 On the
other hand, Ud can be summed rapidly in real space with a
relatively small cut-o↵ distance rcut due to rapid decay of �d

j,p

⌘ m j ⇤ G ⇤ (� � g↵) = erfc(
p
↵ |r�r j |)

|r�r j | ,

Ud =
1
2

NX

i=1

NX

j,i
ri j<rcut

+1X

m=0

+1X

n=0

(�1)nµ(n)
i · n · r(n+m)

j

erfc(
p
↵|ri � r j |)

|ri � r j |
· m · µ(m)

j , (7.6)

where erfc ⌘ 1 � erf is the complementary error function and
ri j ⌘ |ri � r j |. Thus, aside from the need to maintain physical
fidelity as discussed earlier in this section, e�cient calculation
is another argument for using Ewald summation to handle
long-range EMP interactions.

Here, I will apply the results obtained from Sections III
and IV to the evaluation of Uself and Ud. First, from Theo-
rem 3.1, it is clear that if r = 0, as in Equation (7.5) with i = j,
all the terms involving r

(n�2k) with n � 2k , 0 vanish, i.e., for
i = j and |ri � r j | = 0,

r(n+m)
j

erf(
p
↵|ri � r j |)

|ri � r j |

=
8><>:

0 if m + n = 2g + 1, g 2 N0

2n+m�gFn+m�g�
(g ) if m + n = 2g, g 2 N0

(7.7)

so that in case of m + n = 2g, g 2 N0, Uself can be evaluated
using Equation (4.3) with the constraint k = g, On = 0, and
Om = 0.

On the other hand, Ud can be evaluated using Equa-
tion (4.3) with Fk = 2

q
↵
⇡ (�↵)kBk(↵r

2), where Bk(x)
⌘
⇤ +1

1 exp(�xt2)t2kdt is the complementary Boys function of
order k. A very useful downward recursion can be used to
evaluate all Bn�k and Fn�k if we know Bn: Bk(x) = (2xBk+1(x)
� exp(�x))/(2n + 1).

VIII. COMPLEXITY ANALYSIS OF THE ALGORITHM

A. Comparison to recently developed
recursion schemes

Previously, the McMurchie-Davidson formalism46

has been exploited to populate the components of
r(n+m)

j

erfc(
p
↵ |ri�r j |)

|ri�r j | and make the evaluation of Ud e�cient.15

More recently, similar recursion schemes for the kernel func-
tions 1

r⌫
and erfc(

p
↵ |r|)

|r| were proposed by Boateng and
Todorov.37 Since the algorithm I develop here (Equation (4.3))
does not require population of the central tensor in Equa-
tion (7.6), I would like to compare the e�ciency of the cur-
rent approach with the aforementioned recursion ones. For
simplicity, the discussion here is restricted to the interaction
energy between two EMP moments of the same rank p, but it
is trivial to generalize the conclusions here to forces or torques
as well as to EMP moments of di↵erent ranks.

In general, there are two major steps in the aforementioned
recursion schemes:

1. Construct a matrix representing the central tensor of
r(n) f (r2) where f (r2) is the kernel function.

2. Evaluate the vector-matrix-vector bilinear form, where the
two interacting EMP moments are represented by the two
vectors.

Without going into the details, I simply give the num-
ber of multiplication and addition as a function of p for the
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algorithms under comparison here (the derivation is given in
Section S4 of the supplementary material57). Note that I do
not explicitly give the “big O” notation for complexity here
because it only tells how the complexity scales as a function
of the inputs and does not necessarily indicate the e�ciency
of the algorithm in solving a given problem. (However, one
can easily fit a polynomial to the result I give later to obtain
a “big O” estimate.) For example, the FMM, which scales as
O(N), is significantly slower than the Particle Mesh Ewald
(PME), which scales as O(N log N), for most reasonable sys-
tem sizes.10,50 In molecular simulations with explicit repre-
sentations of EMP, one usually cannot a↵ord going higher
than p = 4 even with state-of-the-art computation facilities.
p  2 is more commonly seen.14–20,23,24 In fact, in the later
comparison with the recursive algorithms developed previ-
ously (see below), one can verify that the algorithm here is
faster than the recursive ones until p � 100. Therefore, the “big

O” notation is irrelevant in the comparison among the methods
under discussion.

The McMurchie-Davidson formalism costs
 

2p + 4
4

!
⇤ 2 +

 
p + 2

2

!2

+

 
p + 2

2

!
(8.1)

multiplications and
 

2p + 4
4

!
+

 
p + 2

2

!2

� 1 (8.2)

additions. The recursion scheme proposed by Boateng and
Todorov for 1

r⌫
costs

 
2p + 3

3

!
⇤ 17 +

 
p + 2

2

!2

+

 
p + 2

2

!
(8.3)

multiplications and
 

2p + 3
3

!
⇤ 9 +

 
p + 2

2

!2

� 1 (8.4)

additions, while that for erfc(
p
↵ |r|)

|r| costs

 
2p + 3

3

!
⇤ 31 +

 
p + 2

2

!2

+

 
p + 2

2

!
(8.5)

multiplications and
 

2p + 3
3

!
⇤ 16 +

 
p + 2

2

!2

� 1 (8.6)

additions.
On the other hand, Equation (4.3) costs

6
 

p + 2
3

!
+

pX

lc=0

(2 + (
$

p � lc
2

%
+ 1)(3 +

 
lc + 2

2

!
+ (3 +

 
lc + 2

2

!
)(

$
p � lc

2

%
+ 1))) (8.7)

multiplications and

4
 

p + 2
3

!
+ 2Tr +

pX

lc=0

(
 

lc + 2
2

!
(

$
p � lc

2

%
+ 1)

$
p � lc

2

%
+

 
lc + 2

2

!
� 1) (8.8)

additions, where

Tr ⌘

8>>>>>><>>>>>>:

4
3

 
g + 1

2

!
(g + 1)(g + 2) if p = 2g + 1, g 2 N

1
3

 
g + 1

2

!
(p2 + 2p � 2) if p = 2g, g 2 N

.

(8.9)

The ratios between the complexity of the 3 recursion
schemes and Equation (4.3) are plotted as function of p in
Figure 1. While the recursion schemes are intuitively easy to
interpret, they are significantly slower as compared to the algo-
rithm here. For example, to evaluate the energy between two
hexadecapoles (p = 4) with the kernel 1

r⌫
, the algorithm here is

about 9 times faster than that prosed by Boateng and Todorov

(Figures 1(c) and 1(d)); to evaluate the direct space energy
between two hexadecapoles in the Ewald summation with the
kernel function erfc(

p
↵ |r|)

|r| , the algorithm here is about 4 times
faster than the McMurchie-Davidson formalism (Figures 1(a)
and 1(b)) and about 16 times faster than the algorithm proposed
by Boateng and Todorov (Figures 1(e) and 1(f)).

What makes the recursion algorithms slow is the construc-
tion of the central matrix in step 1. For small p, the reader can
easily verify that step 1 alone is already much more expen-
sive than the complete computation of the energy via Equa-
tion (4.3). This can also be seen from the fact that for the same
kernel erfc(

p
↵ |r|)

|r| , the McMurchie-Davidson formalism di↵ers
only in step 1 from that proposed by Boateng and Todorov
and former is faster than the latter (compare Figures 1(a) and
1(b) with 1(e) and 1(f)) because of a much simpler recursion
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FIG. 1. The ratio of computational complexity (Y-axis) between the two recursion schemes and Equation (4.3) ((a) and (b): McMurchie-Davidson;15 (c) and
(d): recursion scheme for computing gradients of 1

r⌫ as in Ref. 37; (e) and (f): recursion scheme for computing gradients of erfc(
p
↵ |r|)

|r| as in Ref. 37; (g) and (h):
ideal recursion scheme where constructing the central tensor requires 1 operation per element) in terms of multiplication ((a), (c), (e), and (g)) or addition ((b),
(d), (f), and (h)) as a function of EMP ranks (X-axis).

scheme15,37 for constructing the central tensor. Also, from
an optimization prospective, it is much easier to parallelize
the computation in Equation (4.3) (see Section IX) than the
recursive ones; the construction of the central tensor, which is
the bottleneck step, is almost impossible to parallelize since its
elements have to be computed in a specific order.

The need to construct the central tensor also requires a
large amount of memory. In typical molecular simulations, the
central tensor in Equation (7.6) has to be stored in memory
for each pair of atoms, and this costs nC

⇣
p+2

2

⌘2
, where n is

the total number of atoms and C depends on the distance cut-
o↵ scheme in the simulation. Care has to be taken in order
to optimize for memory access, which adds to the di�culty
of implementation.15 On the other hand, Equation (4.3) only
requires storage of an array of n(

⇣
p+2

3

⌘
+ Tr

2 ) elements regard-
less of what cut-o↵ scheme is used. This means Equation (4.3)
is not only faster and more memory e�cient but also easier
to implement and optimize than the recursive algorithms for
computing EMP interactions. Figure 2 shows the ratio between
the memory consumption of the recursion schemes and the
current algorithm. It is obvious that the recursion schemes
consume about 3 orders of magnitude more memory than the
current algorithm.

B. Comparison to the best possible recursion scheme

As the current algorithm is faster than the aforementioned
recursive ones, one interesting question to ask is whether we
can improve the recursion to speed up the calculation. Let us

assume that in an ideal recursion scheme, one would need only
one multiplication and one addition to construct each element
of the central tensor/matrix. To build the central tensor/matrix
up to rank p, one would need to calculate at least

⇣
2p+3

3

⌘

elements. This means we need at least
⇣

2p+3
3

⌘
multiplications

and additions. To perform the bilinear form, we need additional⇣
p+2

2

⌘2
+

⇣
p+2

2

⌘
multiplications and

⇣
p+2

2

⌘2 � 1 additions. This
totals to

FIG. 2. The ratio of memory consumption between the recursion schemes
and Equation (4.3) as a function of EMP ranks. Note that in the recursion
schemes, one needs to store a matrix for each pair of atoms. The number of
pairs for each atom is assumed to be 140, which amounts to the typical size
of the pair list with a distance cuto↵ of 10 Å in a simulation system that has
the same density as water.
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FIG. 3. The ratio of execution time between the recursive algorithm by
Boateng and Todorov37 and Equation (4.3) with the Coulomb kernel 1

r at
the hexadecapole level (p = 4) for each of the 100 tests.

 
2p + 3

3

!
+

 
p + 2

2

!2

+

 
p + 2

2

!
(8.10)

multiplications and
 

2p + 3
3

!
+

 
p + 2

2

!2

� 1 (8.11)

additions. Figures 1(g) and 1(h) show the complexity ratio be-
tween this ideal recursion scheme and the algorithm I develop
here. It is obvious that the algorithm here is even more compet-
itive than such an ideal (impossibly simple) recursion scheme.
Also note that when the central tensor is traceless, the algo-
rithm developed here can be even faster (see discussion in
Section IV) while the recursion scheme cannot use this trick
to speed up the calculation.

C. Numerical validation

To validate the comparison in Section VIII A, I imple-
mented the algorithm developed here and the recursive one by
Boateng and Todorov37 for the Coulomb kernel ( 1

r
) and did a

performance test on both. The test was to evaluate the elec-
trostatic potential of a system containing 5000 hexadecapoles
randomly and evenly distributed across a 20 ⇥ 20 ⇥ 20 box.
The components of the hexadecapole were chosen randomly
between 0 and 0.05. Units are chosen such that the Coulomb’s
constant is 1. The potential energies between all unique pairs of
hexadecapoles are evaluated, totaling the number of pairwise
energy evaluations to

⇣
5000

2

⌘
. The same test is repeated for 100

times and at each time, the ratio between the execution time
of the two algorithms is plotted in Figure 3. The recursive
algorithm costs about 6.5 times as much as the algorithm

developed here when the two algorithms give the same elec-
trostatic potential energy (with 15-digit accuracy in double
precision). Note that this ratio might vary a bit with di↵erent
implementations but it agrees qualitatively with the result (9
times) from complexity analysis in Section VIII A. Again,
this shows that the algorithm developed here is faster than the
recursive one.

D. Reasons for the algorithm’s e�ciency

The e�ciency of the current algorithm stems from the
gist of the multipole expansion, which is basically a series of
projections in multilinear space (see Section V), and decom-
posing the bilinear form into the minimal set of these projection
operations. Perhaps more importantly, each of these projection
operations has very simple operands, i.e., the two interacting
EMP moments and the distance-dependent r

(m+n), so that no
operation is wasted on computing intermediate variables. I will
simply conclude this section with the textbook example of
dipole-dipole interaction. It is easy to recover the following
well-known dipole-dipole interaction energy equation by plug-
ging the Coulomb potential ( 1

r
) into Equations (4.3) and (2.10):

U =
�3(µ(1)

i · r̂i j)(µ
(1)
j · r̂i j) + µ(1)

i · µ
(1)
j

r3
i j

, (8.12)

where r̂i j is the unit vector of ri j ⌘ ri � r j. This only requires
3 dot products and a few scalar multiplications. On the other
hand, if one was to use the recursive algorithm, e.g., the one
proposed by Boateng and Todorov,37 the working equation
would be

U = µ(1)
i Mµ(1)

j , (8.13)

where one would need to first fill out the upper triangle of
the 3 ⇥ 3 symmetric matrix M via recursion, with the costs
of each element being more than 20 floating-point operations,
and then carry out the bilinear form with the equivalent of
4 dot products. Arguably, one could manually optimize out
some multiplication-by-zero operations from the published
equations;37 however, even if we assume an ideal case where
it needs only 1 multiplication and 1 addition, such a method
spends a significant number of operations on computing unnec-
essary intermediate variables, making it suboptimal compared
to the algorithm developed here.

IX. IMPLEMENTATION

Equations (4.3), (2.16), and (2.17) can be easily imple-
mented as a series of matrix-vector products. Taking Equa-
tion (4.3) as an example, we can cast it into a triple sum over
lc, lm, and ln as follows:

A

(n) · n · r(n+m) f (r2) · m · B

(m)

=

min(m,n)X

lc=0

(
�
m�lc

2

⌫
X

lm=0

⇢ 
A

(m:lm) · Om · r

(Om)
�
· lc ·

 �
n�lc

2

⌫
X

ln=0

⇣
B

(n:ln) · On · r

(On)C 0
� m , n
lc, lm, ln

�⌘��)
, (9.1)
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where

C 0
� m , n
lc, lm, ln

�
⌘ C

� m , n
lc, lm, ln

�
2m+n�lc�lm�ln

⇥ Fm+n�lc�lm�ln. (9.2)

For a given triplet of m, n, and lc, C 0( m , n
lc, lm, ln

) can be re-
interpreted as a (

h
m�lc

2

i
+ 1) ⇥ (

h
n�lc

2

i
+ 1) matrix C

0{m,n,lc},

C

0{m,n,lc}
lm,ln

⌘ C 0
� m , n
lc, lm, ln

�
, (9.3)

where the superscript {m,n, lc} is just a reminder of the
fact that C

0 is a function of m, n, and lc. Similarly,
A

(m:lm) · Om · r

(Om) and B

(n:ln) · On · r

(On) can be treated as
the elements of the respective lm + 1 and ln + 1 array of lc-rank
tensors,

A

{m,lc}
lm

⌘ A

(m:lm) · Om · r

(Om), (9.4)

B

{n,lc}
ln

⌘ B

(n:ln) · On · r

(On), (9.5)

where the superscripts {m, lc} and {n, lc} again indicate that
A and B are functions of m or n and lc. Equation (9.1) can then
be cast into a vector-matrix-vector bilinear form

A

(n) · n · r(n+m) f (r2) · m · B

(m) =

min(m,n)X

lc=0

AC

0
B (9.6)

if we define the vector-vector dot product between the two
tensor arrays A and C

0
B as element-wise lc-fold tensor

contraction.
There are a few advantages to using the bilinear form in

Equation (9.6) to calculate the EMP energy in Equation (2.14).
First of all, as discussed in Section VIII, the number of oper-
ations is much smaller than directly evaluating the bi-contrac-
tion via the canonical matrix formalism even in the case where
the central tensor can be populated recursively. Second, in
applications where the EMP sites are represented by EMP
polytensor,51,52 e.g., as in a molecular dynamics force field,
one needs to evaluate Equation (9.6) for each A

(n) against a
series of B

(m) at the same displacement r where m varies.
One can just populate the array defined in Equation (9.4)
for the largest possible lc and use it for any m. This is in
contrast with the canonical matrix formalism where the central
tensor has to be populated for each individual pair of m and
n, which costs extra operations. Last but not the least, unlike
the formalism proposed by Smith,41 where a large number of
scalar arithmetic terms have to be written out manually, the
simplicity of Equation (9.6) makes it possible to use compact
data structures such as arrays in implementation with the ease
of debugging and code maintenance. For example, for a list of
EMP sites interacting with A

(n), one can build up a matrix D

whose rows are the B arrays for each of the interacting sites so
that the total energy can be computed using Equation (9.6) with
the matrix-vector product C

0
B simply replaced by the matrix-

matrix product of C

0
D. This also makes it very easy to use

high performance linear algebra libraries such as BLAS53,54 or
Blaze55,56 to carry out the computation.

For force and torque as in Equations (4.4) and (4.5), one
can also find an expression similar to Equation (9.6). Instead of

elaborating the details, the author has implemented a C++11
template library for basic operations of symmetric Cartesian
tensors with the focus on its application in computation of
EMP energy, force, and torque. It is available for download
at https://github.com/dejunlin/emp/releases. The implementa-
tion achieves consistency between the numerical and analytical
forces and torques with 10-digit accuracy (see Section S5 and
Figure S1 for details57).

X. CONCLUSIONS

In conclusion, I established the algorithm to calculate mul-
tipole-multipole interaction of a generalized potential, which
is a function of inter-site distance only. The method presented
here is much faster than the canonical tensor-based formalism
and has a compact expression that is very easy to implement
in computer programs. A comparison of the current method to
various recursive algorithms developed recently showed that
this method is generally faster. This formalism is applicable to
various interaction potentials where the explicit representation
of multipole moments is needed and its Cartesian basis makes
it a natural fit in modern molecular simulation scheme.

ACKNOWLEDGMENTS

Thanks goes to Dr. Alan Grossfield at the University of
Rochester for helpful comments on the paper. This work was
supported by Grant No. GM095496 from the NIH and the Elon
Huntington Hooker Graduate Fellowship from the University
of Rochester.

APPENDIX: MATHEMATICAL NOTATION
1. Tensors

Here, I adopt the tensor notation used elsewhere.42 We will
denote a Cartesian tensor of rank n by the boldface symbol
A

(n), or by A(n)
↵1...↵n, where the subscripts ↵i (i = 1,2, . . . ,n)

denote Cartesian axes 1, 2, 3 (corresponding to x, y, z, respec-
tively). A

(n) is called a totally symmetric tensor if A(n)
↵1...↵n is

invariant under any permutation of the sequence of subscripts.
A totally symmetric tensor can be denoted by its compressed
form A(n)(n1,n2,n3), where ni is the number of times the i
occurs in the sequence of subscripts ↵1 . . . ↵n and n1 + n2
+ n3 = n. For simplicity, I will abbreviate a rank-1 tensor v

(1),
which is a vector, as v unless specified otherwise. In the context
that v is defined as a vector, I will denote its kth component by
the corresponding non-bold character with subscript k, i.e., vk
and the norm of v by the same character with no subscript, i.e.,
v ⌘ |v| if v is a vector.

2. Tensor contractions and traces

We denote an n-fold contraction by · n · , e.g.,

A

(n) · n · B

(n) ⌘ A(n)
↵1...↵nB(n)

↵n ...↵1, (A1)

where a summation is assumed over a index that appears
twice in a product. Contraction can also be performed between
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tensors of di↵erent ranks, e.g.,

T (m�n)
�1...�m�n

= A

(n) · n · B

(m)

⌘ A(n)
↵1...↵nB(m)

↵n ...↵1�1...�m�n
(m � n) (A2)

or

s(m�n)↵1...↵m�n = B

(m) · n · A

(n)

⌘ B(m)
↵1...↵m�n�1...�n

A(n)
�n ...�1

(m � n). (A3)

We will abbreviate · 1 · as · and thus a dot product between 2
vectors or a matrix-vector multiplication is abbreviated as

u · v ⌘ u

(1) · 1 · v

(1) (A4)

or

A

(2) · v ⌘ A

(2) · 1 · v, (A5)

respectively.
The m-fold trace of A

(n) is defined as

A(n:m)
↵2m+1...↵n ⌘ A(n)

µ1µ1...µmµm↵2m+1...↵n. (A6)

3. Fourier transform

The Fourier transform of a function f (r) is denoted as

f̂ (s) ⌘
⌅

all space
e�i2⇡s·r f (r)dr, (A7)

where dr ⌘ dr1dr2dr3. The corresponding inverse transform is
denoted as

f̌ (r) =
⌅

all space
ei2⇡r·s f (s)ds (A8)

so that f = ˇ̂f .

4. Lattice and Dirac comb

A lattice in R3 is defined by 3 linearly independent bases
u1,u2,u3 so that any lattice point p is expressed by the integer
linear combination of the bases,

p = n1u1 + n2u2 + n3u3, n1,n2,n3 = 0,±1,±2, . . . . (A9)

We will denote such a lattice by L. Any L can be transformed
from Z3 via an invertible linear transformation A, i.e.,

L = A(Z3). (A10)

A can be expressed as a rank-2 Cartesian tensor A

(2) so that

A

(2) · n 2 L, 8n 2 Z3. (A11)

The dual lattice L̃ of L is given by

L̃ = Ã(Z3), (A12)

where Ã ⌘ (A�1)T is the transpose of the inverse of A, so that

p · q 2 Z, 8p 2 L, and 8q 2 L̃. (A13)

We denote the Dirac comb function associated with L as

XL(r) ⌘
X

n2Z3

�(r � A

(2) · n), (A14)

where the sum is over all points in Z3. A function f (r) defined
inV (V ⇢ R3) can be periodized by convolving it with XL(r),

fL(r) ⌘
X

p2L
f (r � p) = f (r) ⇤XL(r), (A15)

where ⇤ denotes convolution.
Define

k ⌘ Ã

(2) · n (n 2 Z3) (A16)

as a vector in L̃. The Fourier transform of fL(r) is given by

f̂L(s) = f̂ (s)X̂L̃(s) (A17)

=
1

|detA(2)|

X

k2L̃
f̂ (k)�(s � k), (A18)

where |detA(2)| is the determinant of A

(2). Taking the inverse
transform of both sides of Equation (A18) will give

fL(r) =
1

|detA(2)|

X

k2L̃
ei2⇡r·k f̂ (k). (A19)

5. Poisson’s equation on a lattice

The Poisson’s equation for the electrostatic potential
�L(r) of a given source ⇢L(r) is

� ��L(r) = 4⇡⇢L(r), (A20)

where both �L(r) and ⇢L(r) are periodic on lattice L ⌘ A(Z3)
and � ⌘ r2 is the Laplace operator. We will denote the pair
of solution �L(r) and the source function ⇢L(r) in Equa-
tion (A20) as

�L(r)
Possion�����*)����� ⇢L(r). (A21)

By using Equation (A19), Equation (A20) has the solution as
the Fourier series,

�L(r) =
1

|detA(2)|

X

k2L̃
ei2⇡r·k�̂(k) (A22)

=
1

|detA(2)|

X

k2L̃
ei2⇡r·k 1

⇡ |k|2 ⇢̂(k) (k , 0), (A23)

where �̂(k) and ⇢̂(k) are the Fourier transform of �(r) and ⇢(r),
which are in turn one period of �L(r) and ⇢L(r), respectively,
and k and L̃ are defined as in Equations (A16) and (A12),
respectively.
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