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ABSTRACT: Alchemical free energy calculations are widely used
to predict the binding affinity of small molecule ligands to protein
targets; however, the application of these methods to RNA targets
has not been deeply explored. We systematically investigated how
modeling decisions affect the performance of absolute binding free
energy calculations for a relatively simple RNA model system:
theophylline-binding RNA aptamer with theophylline and five
analogs. The goal of this investigation was 2-fold: (1) under-
standing the performance levels we can expect from absolute free
energy calculations for a simple RNA complex and (2) learning
about practical modeling considerations that impact the success of
RNA-binding predictions, which may be different from the best
practices established for protein targets. We learned that
magnesium ion (Mg2+) placement is a critical decision that impacts affinity predictions. When information regarding Mg2+

positions is lacking, implementing RNA backbone restraints is an alternative way of stabilizing the RNA structure that recapitulates
prediction accuracy. Since mistakes in Mg2+ placement can be detrimental, omitting magnesium ions entirely and using RNA
backbone restraints are attractive as a risk-mitigating approach. We found that predictions are sensitive to modeling experimental
buffer conditions correctly, including salt type and ionic strength. We explored the effects of sampling in the alchemical protocol,
choice of the ligand force field (GAFF2/OpenFF Sage), and water model (TIP3P/OPC) on predictions, which allowed us to give
practical advice for the application of free energy methods to RNA targets. By capturing experimental buffer conditions and
implementing RNA backbone restraints, we were able to compute binding affinities accurately (mean absolute error (MAE) = 2.2
kcal/mol, Pearson’s correlation coefficient = 0.9, Kendall’s τ = 0.7). We believe there is much to learn about how to apply free energy
calculations for RNA targets and how to enhance their performance in prospective predictions. This study is an important first step
for learning best practices and special considerations for RNA-ligand free energy calculations. Future studies will consider
increasingly complicated ligands and diverse RNA systems and help the development of general protocols for therapeutically relevant
RNA targets.

1. INTRODUCTION
In recent years, the use of RNA as a therapeutic modality has
garnered significant attention and has shown promising clinical
success.1−3 RNA can serve as the active molecule designed to
create the therapeutic effect or it can be the therapeutic target of
a small molecule binder with the ability to inhibit or modulate.4

These applications create motivation for developing computer-
aided design approaches for RNA binders and modeling RNA−
ligand interactions.

For mRNA-based therapeutics, designing efficient formula-
tions is crucial for potency, stability, cellular uptake, and
translation efficiency.5,6 mRNA lipid nanoparticle formulations
have a diverse composition of excipients including lipids,
polymers, and small organic molecules with diverse functions
including buffering and cryoprotection.7 We believe that
exploring the interaction between formulation components

and specific regions of RNA has the potential to guide the design
of future formulations. RNA-targeting small molecule inhibitor
design is an obvious application of RNA−small molecule
binding affinity predictions, but accurately estimating the
binding free energies between RNA and small molecules can
also guide the design of excipients and formulation components
to achieve better drug product characteristics, especially when
fine-tuning their RNA affinity might be required.
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Binding free energy calculations, using all-atom molecular
dynamics (MD) simulations and alchemical free energy
methods, have emerged as powerful tools in understanding
and predicting ligand−receptor interactions.8−13 Alchemical
methods, such as free energy perturbation (FEP)14−16 and
thermodynamic integration (TI),17−19 are widely used in
computer-aided drug discovery for targeting proteins with
small molecule inhibitors.20,21

However, using alchemical free energy calculations to predict
the RNA-binding affinity of small molecules is an uncommon
and relatively uncharted territory. There are only a handful of
studies that report relative free energy calculations for RNA and
these are limited to model systems, not clinical targets.22−24

Some of these studies focus on predicting the effect of RNA
mutations on binding free energies, instead of predicting relative
affinities of small molecule ligands with diverse chemistry.25−27

Chen et al.’s work on guanine riboswitch and Tanida et al.’s
publications on theophylline-binding RNA aptamer are the only
published examples of absolute binding free energy calculations
for RNA targets to our knowledge.25,28,29

In this study, we focused on absolute binding free energy
calculations for RNA targets instead of relative free energy
calculations. The main reason is the potential of absolute
calculations to be used for comparing predicted binding
affinities of structurally unrelated ligands or ligands that assume
different binding modes or even different binding sites.
Although relative free energy calculations have cost and accuracy
advantages for ranking binding affinities of closely related
ligands, this approach is not suitable for comparing dissimilar
ligands with different binding modes. For the potential
application of free energy calculations to the design of
formulation components and excipients of RNA therapeutics,
we anticipate the need to model chemically diverse ligands that
may interact with RNA-binding sites in different ways. With this
perspective, we focused our efforts on absolute free energy
calculations, despite the challenges they bring.

The application of binding free energy calculations to RNA
targets is in its infancy, and there is much to learn. Working with
RNA poses additional challenges compared to protein targets.
The unique characteristics of RNA, including its negatively
charged polymer backbone, higher conformational flexibility
compared to proteins, and water-exposed binding sites,
introduce significant technical challenges for modeling RNA−
small molecule complexes. Moreover, RNA has a limited
chemical diversity of building blocks (4 nucleotides compared
to 20 amino acids). This smaller repertoire can make it harder
for models to distinguish specific interactions that contribute to
binding affinity. Consequently, there is a need to explore the
performance and applicability of alchemical free energy
methods, specifically in the context of RNA targets.

In this study, we took the first steps toward understanding if
the success of alchemical free energy simulations in predicting
ligand−protein interactions can translate into RNA targets.
Specifically, we explored the performance of alchemical free
energy methods on a simple and well-studied model system: the
theophylline-binding RNA aptamer with six theophylline
analogs.22,28−30 This model system was chosen because it has
the largest experimental affinity range (5.5 kcal/mol) among its
six congeneric ligands compared with other options considered.
The large range of binding affinities makes this system suitable
for exploring the effect of simulation parameters and setup
choices on the predicted results and allows distinguishing
differences in performance. An experimental three-dimensional

(3D) structure exists for the theophylline-bound complex of the
theophylline-binding RNA aptamer.30,31 Other structurally
similar ligands most likely share the same binding site. Another
advantage of this system was that all six ligands have neutral
charges and lack rotatable bonds. By focusing on this relatively
simple model system, we aimed to evaluate the feasibility of
applying these methods to RNA targets and provide insights into
the challenges that need to be addressed when modeling RNA−
ligand interactions with alchemical free energy methods.

To explore how a state-of-the-art tool performs in this new
challenge, we selected the BFEE2 software package32,33 for the
setup and analysis of the absolute binding free energy
calculations. BFEE2 is a versatile tool that streamlines the
setup and analysis of absolute free energy calculations with both
alchemical and geometric routes. It is an open-source software
that supports many force fields and configuration files for
NAMD34 or GROMACS.35 The automation of setup and
postprocessing minimizes errors and achieves reproducibility.
Default workflows in BFEE2 were designed to be robust for
diverse protein systems. The authors have demonstrated
successful results for predicting binding free energy for a diverse
set of systems: protein−peptide complexes and protein−small
molecule complexes with buried or surface binding sites, flexible
or rigid ligands, neutral or charged ligands, and aqueous and
membrane protein targets.32,33 Although the BFEE2 workflow
had not yet been applied to predict binding free energies for
nucleic acid targets, we thought it was a promising start given the
rigorous statistical mechanical framework designed to work with
a broad range of challenging applications of protein targets.

The alchemical free energy perturbation (FEP) route was
preferable over the geometric route of BFEE2 due to multiple
reasons: (1) It is suitable for both buried or shallow (solvent-
accessible binding sites on the target surface) binding sites, (2)
the alchemical route reduces human intervention during the free
energy calculations compared to the geometric route. On the
other hand, the geometric route may be advantageous for
charged ligands in solvent-exposed binding pockets. For us, the
alchemical route was more attractive, as we aimed to adopt
workflows that can potentially predict free energies of tens of
ligands at a time, which is only practically feasible with a fully
automated workflow.

To gain a comprehensive understanding of the factors
influencing computed RNA−small molecule binding free
energies, we explored various conditions and parameters beyond
those typically considered for free energy calculations for protein
targets. Specifically, we investigated the impact of different
buffer conditions, including salt type (NaCl vs KCl) and
concentration, the presence of magnesium ions (Mg2+), and
RNA backbone restraints. Protein−ligand free energies are
generally not particularly sensitive to buffer conditions, but due
to the highly negatively charged and flexible backbone of RNA,
we suspected that capturing realistic ionic strength and ionic
interactions may play a more significant role. We also examined
the effect of Mg2+ ions that bind strongly to the RNA backbone,
aiming to assess their influence on the stability of the RNA−
small molecule complex.

We investigated whether applying backbone restraints to the
RNA backbone provides any benefit. Restraints to control the
ligand pose in the binding site are typical in alchemical free
energy calculations,36 but it is not typically necessary or
desirable to restrain the target macromolecule when it is a
protein. However, RNA targets can be much more flexible than
proteins, given the presence of six backbone dihedral angles per
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nucleotide. To address the inherent conformational flexibility of
RNA, we explored the application of restraints to the RNA
backbone, seeking to mitigate the challenges associated with
RNA’s dynamic nature on the convergence of free energy
calculations. To do this correctly, we had to adjust the
thermodynamic cycle for the alchemical free energy calculation
to capture the contributions of RNA backbone restraints. Target
backbone restraints are not typically used in absolute free energy
calculations for protein complexes. The BAT python tool
developed by Heinzelmann and Gilson is the only example
where conformational restraints for the macromolecular target
were used for absolute free energy calculations.37 In the BAT
workflow, the conformational restraints are applied to the
protein with optional harmonic potential restraints on the
backbone dihedral angles. In our protocol, we implemented a
root-mean-square deviation (RMSD) restraint on the RNA
backbone heavy atoms to keep the conformation of the RNA
close to its experimental structure.

The small molecule force fields and water models were
selected by considering their compatibility with the RNA force
field of choice for this study: Amber OL3.38 Since both Amber
OL3 and Generalized Amber Force Field 2 (GAFF2)39 were
developed with the TIP3P water model,40 this combination gave
us the best chance of compatibility of force field parameters. In
addition, we evaluated the performance of different water
models by comparing the widely used TIP3P water model with
the OPC water model.41 This allowed us to assess the
contributions of the water model to the accuracy of our binding
free energy predictions. Furthermore, we compared the
performance of GAFF2 and Open Force Field (OpenFF

Sage)42,43 in describing the small molecule’s interactions, aiming
to understand the impact of force field choice on the accuracy of
our calculations.

By systematically exploring these different conditions and
parameters on a simple model system, our goal was to learn the
unusual considerations necessary when applying binding free
energy calculations specifically to RNA targets compared to
typical protocols for protein targets. Our study provides insights
into the influence of various modeling decisions on the accuracy
and reliability of alchemical free energy methods when applied
to RNA−small molecule binding. This investigation is a crucial
first step toward learning the best practices for achieving
accurate RNA-binding affinity predictions. With future studies
gradually expanding this investigation to diverse RNA−ligand
systems with increasing complexity, we can establish the best
practices for applying alchemical free energy calculations to
RNA. Reliable and wide use of free energy calculations for
capturing RNA−small molecule interactions would be a
beneficial addition to the computer-aided drug design toolbox
for facilitating the rational design of small molecules targeting
RNA or excipients for RNA formulations in different therapeutic
applications.

2. METHODS
2.1. Model Setup. The structure of this theophylline−RNA

aptamer complex was originally determined using NMR
spectroscopy;30 however, for this study, we used the refined
NMR structure31 (PDB ID: 1O15, Figure 1). For theophylline
analogs (1-methylxanthine, 3-methylxanthine, hypoxanthine,
xanthine, and caffeine) studied here, we used the same RNA

Figure 1. Theophylline-binding RNA aptamer. (a) NMR structure of the theophylline-binding aptamer (PDB ID: 1O15). Three Mg2+ ions, purple,
red, and orange, were manually placed to bind the backbone of the RNA based on previous studies.22,44,45 RNA side chains and theophylline are shown
in licorice with carbons colored cyan and green, respectively. The zoomed-in figure highlights two hydrogen bonds between theophylline and the RNA,
shown as red dashed lines. (b) The secondary structure of the theophylline-binding aptamer. (c) Chemical structures of theophylline and five of its
analogs with experimental binding free energies46 are shown below each compound.
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structure and swapped theophylline with other small molecules
by aligning the ring structures of the small molecules using
VMD.47

To investigate the effect of structural Mg2+ ions on free energy
calculations, we set up systems with zero, two, and three Mg2+

ions. In systems containing two Mg2+ ions, the first Mg2+ ion
(MgI

2+) was coordinated with C22 OP1, U23 O5′, and U24
O3′44 and the second ion (MgII

2+) was coordinated with OP2
atoms of G14 and A15, and with OP1 atom of A16.22 In the
three Mg2+ systems, a third Mg2+ ion (MgIII

2+) was added to
coordinate with G2 O6 and U32 O4.45 All of the Mg2+ ions were
placed at the center of mass of the coordinating atoms.
Afterward, the RNA−ligand systems were solvated with a
water box size of at least 68 × 68 × 68 Å3.

Next, we added salt to the simulation box to match the ionic
strength of the binding affinity experiments by considering the
experimental buffer condition: 50 mM NaCl, 5 mM MgCl2, and
100 mM N-(2-hydroxyethyl)piperazine-N′-ethanesulfonic acid
(HEPES) at pH 7.3. The ionic strength (I) of the experimental
buffer was determined to be 85 mM as follows:

=
=

I c z0.5
i

n

i i
1

2

(1)

where ci is the molar concentration of the ith ion species, and zi is
the corresponding formal charge of the ion. From the buffer
conditions above, we calculated the following ion concen-
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To approximate the experimental ionic strength in our
simulations, we added 55 mM NaCl to the three Mg2+ system,
yielding an ionic strength of 84 mM. Then, we used the same
NaCl concentration, 55 mM, to ionize our zero and two Mg2+

systems as well. For comparison purposes, we prepared some
systems with a higher salt concentration of 150 mM as well.
Moreover, we changed the cations by ionizing some systems
with KCl. In the ionization process, based on the volume of the
box, we first added enough co-ion/counterion pairs to achieve
the desired solution salt concentration. Next, we added more
counterions to neutralize our simulation box. We also prepared a
system in which we only neutralized the system using Na+

counterions. Table 1 lists all of the conditions explored in this
study. For each set of conditions, we repeated simulations three
times. Each replicate simulation is independently built and
simulated.

Please refer to SI Section 11.2.1 for the step-by-step protocol
for the model setup.
2.2. Initial Equilibration Simulation Conditions. All

systems were initially equilibrated with the following protocol
unless stated otherwise: (1) 5000 steps of energy minimization,
followed by 4 ns of restrained equilibration by applying
harmonic positional restraints (k = 5 kcal/mol/Å2) to all RNA
and ligand heavy atoms as well as the Mg2+ ions (if present in the
system); (2) gradual removal of all positional restraints
(stepwise decreasing the restraint force constant from 5 to 0
kcal/mol/Å2) during a 5 ns simulation; (3) 100 ns of
unrestrained equilibrium simulation. Steps 1 to 3 were all
performed using NAMD334,48 in the isothermal−isobaric
(NPT) ensemble at 298 K and 1 atm.

Please refer to SI Section 11.2.2 for the detailed protocol for
pre-BFEE2 equilibrium simulations.
2.3. Simulation Parameters. Unless stated otherwise, all

simulations were run using NAMD3, and all free energy
calculations were performed using the following protocol: RNA

Table 1. Summary of the Different Methods Explored in This Study and their Overall Performancea

method
ID

salt
condition

number
of Mg

water
model

ligand
force field

number of windows,
length per window

RNA backbone
restraints MAE RMSE Pearson’s r Kendall’s τ Spearman’s ρ

1 55 NaCl 0 TIP3P GAFF2 40, 1 ns/win no 1.4 2.0 0.8 0.5 0.7
2 55 NaCl 2 TIP3P GAFF2 40, 1 ns/win no 2.2 2.4 0.9 0.7 0.8
3 55 NaCl 3 TIP3P GAFF2 40, 1 ns/win no 3.0 3.1 0.6 0.7 0.9
4 55 NaCl 0 TIP3P GAFF2 40, 1 ns/win yes 2.2 2.5 0.6 0.7 0.9
5 55 NaCl 2 TIP3P GAFF2 40, 1 ns/win yes 2.6 2.9 0.7 0.7 0.9
6 55 NaCl 3 TIP3P GAFF2 40, 1 ns/win yes 2.7 3.2 0.4 0.3 0.4
7 55 NaCl 2 OPC GAFF2 40, 1 ns/win no 2.3 2.8 0.3 0.3 0.5
8 55 NaCl 2 TIP3P OpenFF 40, 1 ns/win no 2.4 2.8 0.5 0.5 0.7
9 55 NaCl 3 TIP3P OpenFF 40, 1 ns/win no 2.4 2.7 0.7 0.5 0.6

10 55 KCl 2 TIP3P GAFF2 40, 1 ns/win no 1.9 2.5 0.3 0.1 0.1
11 55 KCl 3 TIP3P GAFF2 40, 1 ns/win no 2.4 2.8 0.5 0.5 0.6
12 150 KCl 3 TIP3P GAFF2 40, 1 ns/win no 1.7 2.5 0.2 0.5 0.6
13 neutralized 3 TIP3P GAFF2 40, 1 ns/win no 2.5 2.7 0.8 0.5 0.6
14 55 NaCl 2 TIP3P GAFF2 80, 1 ns/win no 2.8 2.9 0.9 0.7 0.9
15 55 NaCl 2 TIP3P GAFF2 40, 2 ns/win no 2.8 3.0 0.9 0.6 0.8
16 55 NaCl 2 TIP3P GAFF2 80, 1 ns/win yes 2.2 2.4 0.7 0.9 0.9
17 55 NaCl 2 TIP3P GAFF2 40, 2 ns/win yes 2.4 2.6 0.6 0.6 0.7
18 55 NaCl 0 TIP3P GAFF2 80, 1 ns/win yes 1.8 2.0 0.8 0.7 0.9
19 55 NaCl 0 TIP3P GAFF2 40, 2 ns/win yes 2.3 2.6 0.5 0.7 0.9
20 55 NaCl 2 TIP3P GAFF2 MM-GBSA no 8.3 8.5 0.3 0.5 0.6
21 55 NaCl 0 TIP3P GAFF2 MM-GBSA no 7.8 8.6 0.1 0.5 0.4

aMethods 1−19 indicate alchemical free energy calculations with variations in the modeling conditions and parameters. Methods 20 and 21 are
MM-GBSA calculations. Performance statistics with 95% confidence intervals were presented in Table S1 and Figures S1−S5.
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was modeled using all-atom Amber OL3 (ff99bsc0χOL3) force
field,38 while ligands were represented by the second generation
General Amber Force Field (GAFF2), as implemented in
Antechamber39 or OpenFF 2.0.0, Sage.42,43 TIP3P or OPC
water models were used.40,41 Monovalent and divalent ions were
modeled with Li and Merz (12-6) ion parameters for the TIP3P
water model (12-6 normal usage set).49,50

A 9 Å cutoff was used for all short-range nonbonded
interactions with switching starting at 8 Å for Lennard-Jones
interactions. Particle mesh Ewald (PME) was used to calculate
the long-range electrostatic interactions using fourth-order B-

spline interpolation and 1 Å grid spacing.51 The SHAKE
algorithm was used to constrain the length of all the hydrogen-
containing covalent bonds.52 A Langevin thermostat maintained
the temperature at 298 K, using a damping coefficient of 1 ps−1.
The Nose−́Hoover Langevin piston-barostat maintained 1 atm
pressure using a piston period and decay of 200 and 100 fs,
respectively.53,54 We used a 2 fs simulation time step in all of the
simulations.

All short-range, nonbonded forces (Lennard-Jones) were
recalculated every time step, while long-range electrostatics were
updated every other time step, using the r-RESPA multiple time-

Figure 2. Simulation steps and thermodynamic cycle for absolute free energy calculations. (a) Stepwise pre-BFEE2 equilibration of the RNA and
ligands. (b) Thermodynamic cycle based on the BFEE2 workflow.32,56 Open green lock represents unrestrained ligand, while a closed green lock
indicates application of conformational, orientational, and positional restraints on the ligand with respect to the RNA. In steps 1 and 4 free energy
contributions of maintaining the ligand using restraint potentials are calculated in unbound (ΔG(bulk,rest)) and bound (ΔG(complex,rest)) states,
respectively. Steps 2 and 3 represent the alchemical free energy change for reversibly decoupling the ligand from its environment in unbound
(ΔG(bulk,alch)) and bound (ΔG(complex,alch)) states, respectively. (c) and (d) similar to (a) and (b) but for systems in which RNA backbone is
restrained based on RMSD. Open and closed blue locks represent unrestrained and restrained RNA backbone, respectively. The thermodynamic cycle
for free energy calculations with the RNA backbone RMSD restraints requires an extra step (step 5) to calculate the contributions of the backbone
restraints. This can be calculated by simulating the RNA-only system and gradually turning constraints on and off, similar to how restraint
contributions are calculated in step 4.
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step algorithm.55 Free energy estimates for each replicate were
extracted using the post-treatment procedure of BFEE2 protocol
with FEP estimator.56

2.4. Free Energy Simulations. Alchemical free energy
methods calculate the binding free energy of a ligand to an RNA
target without extensively sampling multiple binding and
unbinding events, which are beyond the reach of all-atom MD
simulations. Instead, they employ a thermodynamic cycle
(Figure 2b,2c) to connect the ligand-bound and unbound
states, by taking the system through some unphysical states by
removing the nonbonded interactions of the ligand with its
environment. To maintain the conformation of the ligand
similar to that of its native bound state during this unphysical
transformation, it is necessary to apply restraints to the ligand, as
described in Section 2.4. These restraints contribute to the final
binding free energy results, and thus, e the contribution of these
restraints in the unbound and bound form, respectively.

Alchemical free energy calculations were set up using the last
frame from the third equilibration step of Section 2.2 after the
RNA and ligand were centered in the simulation box. Using the
alchemical route of BFEE2,32,56 simulations were set up
according to the thermodynamic cycle shown in Figure 2b.
After input generation using BFEE2 GUI, a correction to ligand-
only system files was necessary to take care of the extra
counterions left after the removal of the RNA target with
multiple negative charge. Using Ambertools we reionized the
ligand-only systems to ensure neutrality in the absence of the
RNA aptamer. The decoupling of the ligand from its
environment (the RNA-binding site or the bulk solution,
corresponding to steps 2 and 3 of the thermodynamic cycle
Figure 2b) was calculated using the free energy perturbation
(FEP) method, while its position, orientation, and conformation
were restrained to its native state. To account for the energetic
cost of the enforced restraints, a separate thermodynamic
integration (TI) simulation was performed, in both bound and
unbound systems, in which the force constants of the restraints
were gradually turned off to zero (steps 1 and 4 of the
thermodynamic cycle, Figure 2b). Simulations of steps 1−4 are
carried out in a bidirectional manner to improve the reliability of
the free energy estimates.56

Unless stated otherwise, the following parameters were used
for all of the free energy calculations. In the bound state (RNA−
ligand systems, corresponding to steps 3 and 4 of the
thermodynamic cycle Figure 2b), 40 λ windows were used. In
the unbound state (ligand systems, corresponding to steps 1 and
2 of the thermodynamic cycle, Figure 2b), 30 λ windows were
used. Each λ window was simulated for 1 ns, and the first 200 ps
was discarded as equilibration and not used for taking samples
for free energy calculations.

In all RNA−ligand simulations, seven collective variables
(CVs) were used to restrain the ligand with respect to RNA as
described below:56 (1) A root-mean-square deviation (RMSD)
CV that keeps the ligand’s conformation restrained to its bound
state native conformation (k = 10 kcal/mol/Å2); (2, 3) standard
polar and azimuthal angles (θ, ϕ), defined from the unit distance
vector dunit = (x, y, z) between the center of mass of the ligand
and RNA (k = 0.1 kcal/mol/Å2): θ = cos−1(z) and ϕ = atan2 (y,
x). These two angles specify the position of the ligand with
respect to the RNA; (4−6) three Euler angles defined using
quaternions (q0, q1, q2, q3) that describe the best-fit rotation of
the ligand with respect to its bound state (k = 0.1 kcal/mol/Å2),
describing orientation of the ligand; (7) radial distance

separating the center of mass of the ligand and that of the
RNA (k = 10 kcal/mol/Å2).

Please refer to SI Sections 11.2.3 and 11.6.4 for a detailed
BFEE2 protocol for running and analyzing alchemical free
energy calculations.
2.5. Simulation Setup with OpenFF. In one of our

systems, we used OpenFF 2.0.0 (Sage),42,43 to describe the
ligand’s interactions. To build the systems, we used the steps
described in the OpenFF tutorial (see the protocol in SI Section
11.4). In short, we used the ParmEd python package57 to start
from a system with GAFF2 parameters for the ligand and
replaced the ligand’s force field with OpenFF Sage. The RNA in
this system was still described using Amber OL3
(ff99bsc0χOL3). The TIP3P water model was used for this
system, with 55 mM NaCl and either two or three Mg2+ as
described in Section 2.1.
2.6. Rejection Protocol for Quality Control of the

Replicates. In our protocol, the final estimates of the binding
free energy for each ligand were reported as the mean and
standard deviation of three independent replicate simulations.
We adopted a replicate rejection protocol to filter out replicates
with obvious quality problems. We used only replicates that
passed this initial filter for calculating the final estimates of
binding free energies. Low-quality replicates were detected
focusing only on serious red flags obtained from simulation data:
by checking for hysteresis error and the free energy contribution
of ligand restraints in the complex arm. The replicate rejection
was performed in a principled way based on computed
indicators without making comparisons to the experimental
data. Making replicate rejection decisions in an a priori manner
was important to us for the suitability of the protocol for
prospective predictions in the absence of experimental data.

To ensure all the simulated replicas are healthy, we defined
the following criteria:

(1) The overall hysteresis error reported by BFEE2 should be
less than 10 kcal/mol. This is the predicted error reported by the
BFEE2 protocol based on the hysteresis of backward and
forward transformations throughout the entire thermodynamic
cycle of each replicate.32 It provides an opportunity to check if a
particular replicate has converged enough to provide informa-
tive free energy estimates.

(2) The free energy contribution of the restraints in the
ligand−RNA complex arm should be in a similar range to the
calculations done for the other ligands. For this criterion, we
check that free energy contributions of restraints calculated in
step 1 in the thermodynamic cycle (Figure 2b) are less than 2.5
times the median value for the ΔG calculated from the pool of all
replicates of all the ligands, in each condition. Replicates with
extreme deviations in restraint contributions were rejected and
replaced with a new replicate. An example case is shown in
Figure S9b for Method 2, where the median of ΔG of restraint
contributions in calculated step 1 was around −2.5 kcal/mol for
all replicates, and two replicates with much larger magnitude
were marked and rejected (shown in gray). An extremely high
restraint contribution indicates instability in the ligand pose. In
almost all cases, when this red flag was observed, it coincided
with large RMSD changes for ligand and RNA being observed in
step 1, when restraints were gradually being turned off. RMSD
plots of rejected replicates can be seen in Figure S29.

If either of these conditions were not met for any replicate, we
excluded it from our calculation, and we ran another
independent replicate as a replacement. RMSD plots of accepted
replicates are shown in Figures S17−S28.
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2.7. RNA-Backbone Restrained Simulations. In some of
our simulations, we applied an RMSD restraint to the RNA
backbone heavy atoms (atom names: C3′, C4′, C5′, O3′, O5′,
OP1, OP2, and P), to retain the RNA backbone conformation
observed in the NMR structure.31 In these simulations, the
initial equilibration was performed in two steps as shown in
Figure 2c: (1) 5000 steps of energy minimization, followed by 4
ns of restrained equilibration by applying harmonic positional
restraints (k = 5 kcal/mol/Å2) to all RNA and ligand heavy
atoms as well as the Mg2+ ions if present in the system; (2) 100
ns of equilibrium simulation with RMSD restraints on the RNA
backbone heavy atoms (k = 10 kcal/mol/Å2), using the NMR
structure as the reference.

The last frame from step 2 was used to set up the free energy
simulations using BFEE2. Then, in the simulations of the bound
system, an RMSD restraint on the RNA backbone heavy atoms
(k = 10 kcal/mol/Å2) was added on top of the other seven
restraints described in Section 2.4, by editing the input colvar
files (“000_eq/colvars.in”, “001_MoleculeBound/colvars.in”,
“002_RestraintBound/colvars_backward.in”, and “002_Re-
straintBound/colvars_forward.in”). In these simulations, the
backbone RMSD restraint was applied with respect to the last
frame of step 2 of the initial equilibration. To account for the
contribution of the restraints on the RNA backbone atoms, we
used the modified thermodynamic cycle shown in Figure 2d. In
this thermodynamic cycle, there is a need to calculate an extra
step (step 5) in which we apply the RMSD backbone restraints
to the RNA aptamer in the absence of any bound ligand and
calculate its energetic contributions. These calculations were
carried out using TI simulations in a bidirectional manner, with
each direction simulated for 40 ns in total, during which the
RMSD backbone restraints were gradually turned on and off. We
repeated this calculation on the RNA-only system three times
and used its average value to account for the contribution in the
final binding free energy values for all of the compounds. To
calculate free energy estimates from simulations with RNA
backbone restraints, we follow the BFEE2 post-treatment
procedure56 with the additional change in postTreatment.py
script to accept eight collective variables, instead of the original
seven ligand-only restraints.

The step-by-step protocol for running free energy calculations
with RNA backbone restraint and deviations from the original
BFEE2 protocol were delineated in SI Section 11.5.
2.8. Molecular Mechanics Combinedwith Generalized

Born and Surface-Area Solvation (MM-GBSA) Calcula-
tions. We used the Molecular Mechanics Combined with
Generalized Born and Surface-Area olvation (MM-GBSA)
method58−60 to estimate the binding free energy of six different
ligands, to the RNA aptamer from their equilibrated trajectories.

The binding free energy in the solution can be estimated
using:

= +

+

G G G

G G( )

bind,solv bind,vacuum solv,complex

solv,ligand solv,RNA (3)

where ΔGbind,vacuum is the binding free energy in a vacuum,
ΔGsolv,complex is the solvation free energy of the RNA complex in
solution, ΔGsolv,ligand is the solvation free energy of individual
ligand in solution, and ΔGsolv,RNA is the solvation free energy of
the RNA in solution. Solvation free energies involve electrostatic
and hydrophobic contributions, where the hydrophobic
contribution is an empirical value while the electrostatic
contribution is estimated using the Generalized Born equation

for each of the above three states. We can estimate ΔGbind,vacuum
using the following equation:

=G H T Sbind,vacuum bind,vacuum bind,vacuum (4)

where ΔHbind,vacuum is the enthalpy of binding, T is temperature,
and ΔSbind,vacuum is the entropy of binding which is estimated
using the normal mode analysis.

We used the three replicates of 100 ns pre-BFEE2
equilibration simulations collected for each ligand system for
MM-GBSA calculations. 100 frames were extracted from each
trajectory, uniformly distributed in time, and reimaged to center
RNA in the middle of the periodic box, using the LOOS analysis
package.61,62 For each ligand, free energy estimates were
obtained from three replicate equilibrium trajectories, using
the MMPBSA.py script60 from AmberTools version 2363 to
perform MM-GBSA calculations. Final estimates were reported
as the mean and standard deviation of three replicates for each
ligand.

We performed the MM-GBSA calculations in two ways. The
first MM-GBSA calculation (Method 20 in Table 1) was
performed from equilibrium trajectories with 55 mM NaCl with
two Mg2+ originally prepared for Method 2. The second MM-
GBSA calculation (Method 21) was performed from equili-
brium trajectories with 55 mM NaCl without Mg2+, originally
prepared for Method 1. In both cases, the TIP3P water model
and GAFF2 small molecule force field were used.

Detailed protocol for MM-GBSA calculations is provided in
SI Section 11.7.
2.9. Analysis of Performance. For each ligand and

explored method, we ran three replicate calculations and
reported the average and standard deviations of calculated
binding free energies. We compared the binding free energy of
the compounds with their corresponding experimental measure-
ments and evaluated the results using several different statistical
metrics, including root-mean-square error (RMSE), mean
absolute error (MAE), Pearson’s correlation coefficient (r),
Kendall’s rank correlation coefficient (τ), and Spearman’s rank
correlation coefficient (ρ). For each performance metric, mean
and 95% confidence intervals were estimated by bootstrapping
over six RNA−ligand systems with replacement 1000 times.
Detailed results are presented in Table S1 and Figures S1−S5.

To assess the stability of the RNA aptamer and the bound
ligand, the RMSD was calculated by first aligning the RNA
backbone heavy atoms (atom names: C3′, C4′, C5′, O3′, O5′,
OP1, OP2, and P) to the experimental NMR structure of the
RNA aptamer. We plotted the time evolution of both RMSD of
the RNA backbone heavy atoms and ligand heavy atoms through
all stages of the protocol (Figures S17−S29). This approach
allowed us to catch lower-quality replicates in which the ligand
pose was unstable during the FEP step for capturing complex
interactions or during the TI step for capturing restraint
contributions (steps 3 and 4 of the thermodynamic cycle, as
shown in Figure 2). Some examples of these low-quality
replicates are shown in Figure S29.

We calculated the RNA heavy atom radius of gyration
observed in the aggregated trajectory, i.e., pre-BFEE2
equilibration and the trajectories of the alchemical protocol, to
compare the effect of including different numbers of Mg2+ ions
and RNA backbone restraints on the RNA dynamics (Figures
S10 and S11).

To check the health of the alchemical protocol, we analyzed
the overlap between the potential energy distributions of
backward and forward calculations at every λ-window. To do so,
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we used ParseFEP64 to get the probability distributions of the
potential energy difference (ΔU) values in each lambda window
for backward and forward transformations. Then, we adopted
Kullback−Leibler Divergence (KL-Divergence) calculations to
quantify the difference between the forward and backward
potential energy distributions for easier visualization of

problematic transitions, as shown in Figure S12. A detailed
protocol of KL-Divergence calculations for potential energy
overlap assessment can be found in SI Section 11.8. We also
monitored the overlap in potential energy distributions in this
exercise of doubling the sampling. Figures S13−S16 show
examples of KL-Divergence plots. Green bars indicate pairs of λ

Figure 3. Experimental vs calculated binding free energies. Each compound is represented with a different color, with each data point representing the
average of the three accepted replicate simulations and the error bars showing the standard deviation among the three replicates. The identity line is
shown as a dashed line with 1 and 2 kcal/mol deviations shown in shades of gray. MAE (kcal/mol), RMSE (kcal/mol), Pearson’s correlation coefficient
(r), Spearman’s rank correlation coefficient (ρ), and Kendall’s rank correlation coefficient (τ), are listed in the legends. (a−c) Binding free energies for
theophylline and its analogs for systems with 55 mM NaCl and TIP3P water model and zero, two, and three Mg2+ ions, respectively. (d−f) Systems
with RNA backbone restraints and 55 mM NaCl and TIP3P water model and zero, two, and three Mg2+ ions, respectively. (g) Similar to (b) but with
the OPC water model instead of TIP3P. (h) and (i) Similar to (b) and (c), respectively, but with OpenFF 2.0.0 Sage as ligand force field.42,43
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states with sufficient overlap in potential free energy
distributions and red bars indicate alchemical transformations
with relatively lower overlap, i.e., higher divergence. This
visualization allowed a quick look into how alchemical protocol
changes impact the energetic overlap of sampled states.

We investigated the differences in how different monovalent
cations (Na+ and K+) interact with RNA. We plotted the radial
distribution function (RDF) of monovalent cations to the two
oxygen atoms of the RNA backbone phosphates to understand
their spatial distribution around the phosphate backbone. To
determine the high occupancy sites for monovalent cations we
calculated the density of cations using the VolMap plug-in in
VMD.47 The cation occupation probability densities were
averaged throughout the 100 ns pre-BFEE2 equilibration
trajectory. We visualized cation sites with relatively higher
occupancy by depicting isovalue surfaces at 0.03. For these
visualizations, both K+ and Na+ van der Waals radii were set to 1
Å before calculating occupation probability densities to remove
the effect of the cation size on the depiction of high occupancy
sites.
2.10. Computing Resources. All calculations for this study

were performed with Amazon Web Services. The pre-BFEE2
equilibration took about 13 hours(h) on p3.2xlarge instances
with NVIDIA Tesla V100 GPUs and Intel Xeon Scalable
Processor (Broadwell E5-2686 v4), with the cost of $3.06/h. For
the BFEE2 simulations, g5.8xlarge instances were used with
NVIDIA A10G Tensor Core GPUs and second-generation
AMD EPYC processors (AMD EPYC 7R32). All BFEE2 steps,
except for the systems with OPC water, were completed in about
74 h with the cost of $1.624/h for each replicate of each ligand.
With 100 ns pre-equilibration and alchemical protocol of the 40
λ-windows and 1 ns/window that relies on three replicate
simulations to estimate the free energy of each ligand full
calculation cost per ligand was close to $468 for each
investigated simulation condition.

For systems with the OPC water model, pre-BFEE2
equilibration was performed using CUDA-accelerated
NAMD2.14, instead of NAMD3. Using g5.8xlarge instances,
this step was completed in about 33 h. Steps 1 and 4 of the
thermodynamic cycle were done with CUDA-accelerated
NAMD2.14, however, steps 2 and 3 were done with
NAMD2.14. The total time for completion of the BFEE2
steps on g5.8xlarge instances was around 192 h.

3. RESULTS AND DISCUSSION
In this study, we aimed to investigate the performance of
alchemical free energy methods in predicting absolute binding
free energy of small molecules to RNA. To achieve this, we
studied the binding affinity of theophylline and five of its analogs
to the RNA aptamer. We examined the impact of various
simulation setup decisions, including different salt conditions,
Mg2+ placements, water models, force fields describing the
interactions of ligands, simulation times, and lambda schedules,
on the results of our calculations. Table 1 summarizes the
various conditions studied in this study.
3.1. Mg2+ Placement is a Critical Decision for Binding

Free Energy Calculations. One of the major challenges in
calculating the binding free energies of ligands to RNA targets is
the inherent flexibility of RNA. The secondary and tertiary
structure of RNA is highly dependent on the presence of divalent
cations, such as Mg2+.65−67 The Mg2+ ions stabilize the structure
of RNA by binding to specific parts of the RNA backbone, but
the exact locations of these binding sites are not always known

for different RNA targets. For the theophylline-binding aptamer,
three Mg2+ ions are suggested to bind the aptamer’s back-
bone.22,44,45 MgI

2+ is the closest to the ligand binding site out of
the three, and is in the U-turn formed by C22, U23, and U24,
whereas MgII

2+ coordinates with the phosphate groups of G14−
A16, and MgIII

2+ is located at the G2:U32 wobble pair region in
the lower stem of the aptamer22 (Figure 1). To evaluate the
effect of Mg2+ placement on binding free energy calculations, we
examined systems with zero, two, and three Mg2+ ions. For the
two Mg2+ system, we included MgI

2+ and MgII
2+, as shown in

Figure 1.
In all three cases, we added 55 mM NaCl to each system and

calculated the binding free energy of theophylline and its five
analogs to the RNA aptamer. We replicated each system three
times and reported the average binding free energy from these
replicas with the error bars indicating the standard deviation in
Figure 3a−c. Without Mg2+, the standard deviation between
replicas for each compound is significantly larger than that in the
case of two and three Mg2+ systems (Figure 3a−c). This could
be related to the role of Mg2+ ions in stabilizing the RNA
structure.

The two Mg2+ systems (Method 2) have the best overall
performance in terms of correlation with r = 0.9, τ = 0.7, and ρ =
0.8. In this case, the calculated binding affinities are over-
estimated by ≈2.2 kcal/mol, as indicated in Figure 3b. The
addition of the third Mg2+ (MgIII

2+), negatively impacts the
results, increasing the MAE to 3.0 kcal/mol (Method 3). This is
possibly due to the mischaracterization of the MgIII

2+ placement
on the RNA aptamer. Consistent with this observation, a recent
MD study also reported the instability of the MgIII

2+, and its
dissociation within a few nanoseconds of simulation.28

In this study, we used the standard Li and Merz ion
parameters of the TIP3P water model (12-6 Lennard-Jones) for
modeling the Mg2+ ions and have not explored the impact of
different Mg2+ ion parameters on the predictive performance.
There are alternative models for modeling divalent cations that
could potentially affect the results, such as the ones with 12-6-4
Lennard-Jones potential. For example, a recent studies reported
improved Mg2+ parameters for phosphate interactions68 which
has potential to be helpful for modeling nucleic acid interactions.
It would be informative for future work to explore how the
choice of divalent metal ion parameters changes the predictive
performance of free energy calculations and the sensitivity we
observed for the placement of Mg2+ ions.

The sensitivity of prediction performance to Mg2+ ion
placement is a challenge for setting up free energy calculations
for prospective predictions. In this study, we learned which Mg2+

ion positions to consider from prior studies. Still, among
different combinations, we were only able to judge which
placement was better based on prediction accuracy relying on
experimental affinity values. The decision of Mg2+ placement
would only get more difficult for more complex and less studied
RNA targets, especially if experimental evidence for high-affinity
Mg2+ binding sites is not available. The modeling decisions
around Mg2+ ions would be especially challenging for the
prospective prediction of RNA−ligand interactions.
3.2. Restraining RNA Backbone is a Safe Alternative to

Difficult Mg2+ Placement Decisions for Restricting
Conformational Space. To address the flexibility of RNA
and the lack of information on Mg2+ binding sites, we explored
the impact of applying restraints to limit conformational changes
in RNA. We applied an RMSD restraint to the RNA backbone
heavy atoms (k = 10 kcal/mol/Å2) and added one more step to
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calculate the contribution of this target RMSD restraint, as
shown in step 5 of the thermodynamic cycle in Figure 2d. We
tested the application of the RMSD backbone restraints with
zero, two, and three Mg2+ ion-containing systems as well
(Methods 4, 5, and 6, respectively). Our results indicated that
even if we did not include Mg2+ in our system, the application of
the RMSD backbone restraints improved the convergence of the
binding free energy calculations. The standard deviation
between replicas decreased with the use of RMSD restraints
compared to that of the systems without restraints, Figure 3a,d.
Having Mg2+ in the system while applying the backbone
restraints seems to not impact the results, as long as the Mg2+ are
placed in the correct position, which is the case for the two Mg2+

system, Figure 3e (Method 5). Surprisingly, even with the RNA
backbone restraints, the addition of the MgIII

2+ seems to
negatively impact the results, Figure 3f (Method 6). Overall
our results show the promise of using restraints on the RNA
structure as a solution for cases where there is a reliable
experimental 3D structure of the RNA target but no
experimental guidance on the Mg2+ binding sites.
3.3. Combination of Amber OL3 with TIP3PWater and

GAFF2 Ligand Parameters Performed Better than Tests
with OPC Water or OpenFF Sage Force Field. To evaluate

the impact of the force field for modeling small molecules, in
addition to GAFF2,39 we used OpenFF 2.0.0 Sage42,43 to
describe the ligands in our systems. We tested the Sage force
field under two conditions: 55 mM NaCl, without backbone
restraints, with two or three Mg2+ ions (Methods 8 and 9,
respectively). For both the MAE values were found to be slightly
lower with Sage (2.4 kcal/mol instead of 3.0 kcal/mol), but we
observed a reduction from 0.7 to 0.5 for Kendall’s rank
correlation coefficient. Overall, the Sage force field did not
provide any improvement over results achieved with GAFF2
(Method 2), as shown in Figure 3c,g. Therefore, we decided not
to pursue further exploration of the Sage force field under other
conditions.

Although this force field has many reported successes in the
areas of predicting solvation free energies and protein−ligand
binding affinities, for this model system, we did not observe an
improved performance with Sage over GAFF2. Boothroyd et al.
reported that Sage was developed to be compatible with Amber-
family protein force fields,69 but it may be less compatible with
the Amber RNA force field. It is known that modeling ligand−
RNA interactions has not been a consideration for the
development of Sage. This can be remedied in the future
releases of the OpenFF force field or could be addressed by

Figure 4. Effects of salt conditions on binding free energy calculations and comparison to MM-GBSA calculations. Experimental vs calculated binding
free energies for different conditions: (a) 55 mM KCl and two Mg2+, (b) 55 mM KCl and three Mg2+, (c) 150 mM KCl and three Mg2+, (d) neutralized
only system with three Mg2+ ions without any additional salt beyond neutralization, (e) MM-GBSA calculation using 55 mM KCl and two Mg2+

system, and (f) MM-GBSA calculation using 55 mM KCl and zero Mg2+ system. Each compound is represented with a different color, with each data
point representing the average of the three accepted replicas and the error bars showing the standard deviation among the three replicate simulations.
Refer to the legend of Figure 3 for ligand colors. The identity line is shown as a dashed line, with 1 and 2 kcal/mol deviations shown in shades of gray.
Mean absolute error (MAE, kcal/mol), root-mean-square error (RMSE, kcal/mol), Pearson’s correlation coefficient (r), Spearman’s rank correlation
coefficient (ρ), and Kendall’s rank correlation coefficient (τ) are listed in the legends.
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codevelopment of small molecule and RNA force fields in the
future.

Most of our calculations were performed using the TIP3P
water model, as the Amber OL3 force field for RNA was
developed with TIP3P.38 We specifically wanted to test the
effect of the OPC water model in Method 7 with 55 mM NaCl
and two Mg2+ ions, Figure 3b,h. OPC was chosen as the
alternative as this model was reported to more accurately
capture bulk properties of water41 and in recent studies, OPC
water model was reported to capture experimental RNA
structures better especially when used with additional
modifications to Amber OL3 force field, such as adjustment to
van der Waals radii of phosphate oxygen atoms.70 We did not
explore these modifications and used the Amber OL3 force field

as in this study. With OPC (Method 7), Kendall’s τ dropped to
0.3 from 0.7, which was achieved with equivalent simulations
with TIP3P (Method 2). Meanwhile, the MAE with the OPC
remained relatively similar to that of the system with the TIP3P
water model. Overall, we did not observe any benefit for using
the OPC instead of TIP3P water when RNA is modeled with the
Amber OL3 force field. Additionally, the OPC water reduced the
speed of calculations significantly, especially due to its
incompatibility with the NAMD GPU code. We had to run
these calculations using only CPUs.
3.4. Mimicking the Buffer Conditions of the Binding

Affinity Experiments Improved the Accuracy of Free
Energy Calculations. We observed that RNA−ligand free
energy calculations were sensitive to both the ionic strength and

Figure 5. Distribution of monovalent cations around RNA (a) radial distribution function (RDF) plot of monovalent cations with respect to RNA
backbone on systems with 55 mM NaCl and two Mg2+ with TIP3P water model (blue line), 55 mM KCl and two Mg2+ ions with the TIP3P water
model (orange line), and 55 mM NaCl and two Mg2+ with the OPC water model (green line). The RDF calculations were performed by calculating the
distance of cations from the two oxygen atoms of the RNA backbone phosphates. (b) Density of cations, K+ and Na+ averaged throughout the 100 ns
pre-BFEE2 equilibration trajectory, calculated using Volmap tool in VMD. All densities are shown at an isovalue of 0.03. Both K+ and Na+ van der
Waals radii were set to 1 Å before the calculations. (c) Density of Na+ ions in 55 mM NaCl with zero, two, and three Mg2+ systems are shown in yellow,
blue, and pink, respectively. In the zero Mg2+ system, there is an extra cation density where MgII

2+ resides in the other two systems.
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salt identity of the aqueous environment. Simulation conditions
with 55 mM NaCl represent our closest approximation of the
experimental conditions, in terms of cation identity and ionic
strength.

To compare the effect of monovalent cation choice, we also
simulated systems with 55 mM KCl containing two and three
Mg2+ ions (Methods 10 and 11, respectively). Compared to the
systems with NaCl with matching ionic strength, surprisingly,
the binding free energies results with KCl were farther from the
experimental values (Figure 4a,b). For a deeper dive into the
differences between how these cations interact with RNA please
see Section 3.5.

We explored two extreme conditions to evaluate how
important it is to approximate the ionic strength of the
experimental buffer environment in free energy calculations:
In Method 13, to show the detrimental effect of ignoring ionic
strength adjustment, we only neutralized the system with Na+

ions and structural Mg2+ ions and did not add more salt (Figure
4d). Method 13 has slightly lower rank correlation coefficients
(τ = 0.5, ρ = 0.6) compared to the equivalent condition with 55
mM NaCl and three Mg2+ (Method 2, τ = 0.7, ρ = 0.9).
Increasing the salt concentration to 150 mM KCl with two Mg2+

ions (Method 12) also does not improve the results (Figure 4c).
Based on these observations, we think that it is more important
to model salt conditions correctly for free energy calculations of
RNA targets compared to protein targets, since for protein−
ligand free energy calculations common practice just includes
neutralizing counterions, not necessarily approximating the
experimental ionic strength. Due to RNA’s highly negatively
charged backbone, ionic strength and the shielding effect of salt
molecules are expected to play a bigger role in RNA
conformation.
3.5. Differences in Spatial Distribution of Monovalent

Cations around RNA Can Be the Reason for Differences
in Free Energy Calculations. Cation size-dependent
stabilization of RNA structures has been shown in single-
molecule optical and magnetic tweezer experiments, nuclear
magnetic resonance, and gel electrophoretic studies. In these
experiments, RNA stability is higher in NaCl solution compared
to KCl solution.71 Hence, we investigated the binding
preference of Na+ and K+ to the RNA surface in NaCl and
KCl solutions. We first looked at the radial distribution function
(RDF) of Na+ and K+ with respect to the phosphate groups of
the RNA, as shown in Figure 5a. Our analysis suggests that Na+

ions condense more onto the RNA. The contact peak center for
K+ ions is shifted 0.5 Å away according to the RDF plot
compared to Na+, which matches the difference in the van der
Waals radius of the two ions. But based on the area of the first
RDF peak, more Na+ ions were found to be in contact with the
RNA backbone compared to K+ when modeled with TIP3P
water. This is in line with a recent study that reported smaller
hydrated sodium ions condensing more around the phosphate
groups, leading to a reduction in electrostatic repulsion and
enhancing RNA stability.

Additionally, we calculated the density of the cations and
visualized the high-density regions around the RNA using
aggregated trajectories of all ligands, as shown in Figure 5b. We
observed that the highest occupancy sites of Na+ and K+ ions are
typically adjacent, but show some differences. Most notably, the
location of the cation binding site between the small molecule
and the MgI

2+ is slightly shifted in simulations with K+ relative to
ones with Na+. Positioning of monovalent cations, especially

near the binding site, maybe a factor affecting the free energy
calculations.

We also evaluated the changes in monovalent cation binding
sites between simulation conditions with zero, two, or three
Mg2+ ions, as shown in Figure 5c. The most interesting
observation was that when MgII

2+ was omitted from simulations, a
high occupancy Na+ site appeared at that position. However, this
behavior was not observed for the MgI

2+ and MgIII
2+ positions.

3.6. Increasing the Number of λ Windows Provides a
Slight Improvement while Increasing Sampling Time
perWindowCan Be Detrimental. Based on the results of the
individual steps in the thermodynamic cycle, step 3 which
involves complexation-free energy calculations in the binding
site shows the highest variance between independent replicas
that are simulated (see Figure S9a,e, in comparison to other
steps). To check if increasing the sampling in this step can
improve the results, we doubled the sampling of step 3 (Figure
2b), in two different ways: by doubling the number of λ windows
(80 windows, 1 ns/window; Method 16) and by doubling the
sampling time per λ window (40 windows, 2 ns/window;
Method 17), see Figure S8. We tested out doubling the sampling
in two conditions: 55 mM NaCl with two Mg2+ ions, and 55 mM
NaCl without Mg2+ and with RNA backbone restraints
(Methods 18 and 19). Compared to our base calculations (40
win, 1 ns/win; Methods 2 and 5), using 2 ns/win in both
simulated conditions (Methods 15 and 17), not only does not
improve the results but also slightly underperforms in both
simulation conditions (Figures S8b,d and 3b,d). The reason
longer simulation time per window causes deterioration in
prediction accuracy could be due to the flexible nature of RNA
and the deficiency of the force field. We hypothesize that
increasing the sampling time diminishes the result quality
because the RNA conformation drifts away from the
experimental structure. Using 80 λ windows of 1 ns, on the
other hand, shows a similar rank ordering performance in both
conditions (Methods 14 and 16, compared to Methods 2 and 5).
Moreover, in the case of the RNA backbone restraints, Method
18 (80 windows of 1 ns) shows slight improvement in MAE and
RMSE compared to the base calculations (Method 4).

Considering the cost-benefit ratio, we believe our initial
sampling scheme was already sufficient, and further increasing
the sampling did not lead to significant improvements. These
findings suggest the importance of careful evaluation of the
sampling efficiency in alchemical free energy calculations to
optimize computational resources and improve the accuracy of
the calculations.
3.7. Free Energy Calculations Provided Better Pre-

dictive Power Compared to theMM-GBSAApproach at a
Greater Computational Cost. Running free energy protocol
with 40 λ windows, 1 ns/window, and three replicates for each
ligand has a significant calculation cost, roughly $468 per ligand
including the pre-BFEE2 equilibration runs using the AWS
instances described in Section 2.10. The cost of these
calculations poses a limitation on the number of RNA−ligand
systems that can be routinely evaluated. We estimate that for a
typical discovery project, it would be feasible to evaluate only
tens of ligands with this approach. With this in mind, we were
motivated to explore how the performance of absolute free
energy calculations would compare to that of a less expensive
approach: MM-GBSA calculation to estimate binding free
energy by repurposing the 100 ns pre-BFEE2 equilibration runs.

The accuracy of absolute binding free energy predictions was
significantly lower with MM-GBSA calculations. MAE of 8.3 and
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7.8 kcal/mol was observed for MM-GBSA calculations in
Method 20 and 21, respectively. In both cases, free energy
estimates from MM-GBSA calculations significantly over-
estimated binding affinities for all ligands. The overestimation
of binding affinities by MM-GBSA is expected to become larger
with larger ligands.

For the ranking performance, the free energy calculations
(Method 2, 4, and 5) were more successful than the MM-GBSA
approach. This result was expected since MM-GBSA calcu-
lations were not predicted to do well in the polar and water-
exposed binding sites such as binding sites in RNA targets.58

Nevertheless, MM-GBSA calculations demonstrated some
ability to rank ligands (Kendall’s τ of 0.5), and calculations
cost a quarter of the cost of free energy calculations. Considering
the lower cost, the MM-GBSA approach may still be preferable
as a first-pass enrichment method when it is necessary to
evaluate a larger pool of ligands.
3.8. Comparison of Performance to Other Studies.

There were a few prior studies that studied free energy
calculations on the theophylline-binding RNA aptamer: The
first study by Gouda et al. provides a comparison of the
molecular mechanics Poisson−Boltzmann surface area (MM-
PBSA) and Thermodynamic Integration (TI) approaches for
predicting relative binding affinities of six ligands, studied in our
paper.22 MM-PBSA calculations based on computational
mutagenesis of the ligand on snapshots from a single MD
trajectory approach achieved an impressive r2 of 0.82 (Pearson’s
r of 0.90), given the simplicity of the approach. TI calculations
were carried out to calculate relative free energy differences
(ΔΔG). In contrast to our approach, the alchemical trans-
formation was sampled much more narrowly with 101 windows
and 3 ps equilibration and 3 ps data collection; however, authors
reported successful results with r2 of 0.98 (r of 0.99). By contrast,
we had to run the absolute free energy calculations much longer
with 40 windows 0.2 ns equilibration, and 0.8 ns data collection
to obtain our best results with Pearson’s r of 0.9 with Method 2.
This highlights the advantage of the relative free energy
calculations over absolute whenever ligands are congeneric
with small perturbations and expected to occupy similar binding
poses. For our study design, we had chosen to pursue absolute
free energy calculations despite the expected sampling
challenges and increased cost, due to the attractiveness of the
broader application area of diverse ligands and poses.

Tanida et al.’s paper, published in 2007, reports absolute
binding free energy prediction on the same model system with
the approach of estimating nonequilibrium work using MC-
CAFEE protocol.29 They achieved similar performance and
calculation efficiency to the TI approach presented by Gouda et
al.22 for estimating relative affinities of ligands (Pearson’s r of
0.99). However, they also reported a constant bias in absolute
free energy estimates: ΔGcalc values were all 7 kcal/mol lower
compared with the experimental values for all ligands. In
comparison, we were able to achieve an MAE of 2.2 for our best
methods (Method 2 with three Mg2+ ions, Method 4 with
backbone restraints, and Method 16 with doubled λ schedule),
although our computational cost was significantly higher.
Tanida et al. reported that the hypoxanthine system has the
highest deviation from the linear relationship between predicted
and calculated free energies (1.5 kcal/mol) and suggested that
the binding site of hypoxanthine could be different than others.
Similarly in our hands, hypoxanthine estimates have the highest
deviation from linearity in most of our tested methods (see
correlation plots of Method 1−6 in Figure 3). We observed that

hypoxanthine affinity was systematically underestimated, which
suggests that perhaps it was not modeled in the right pose or
binding site. In both of these early studies, calculations were run
only once; therefore, we were not able to learn about the
prediction uncertainty and the reproducibility of estimates.

In 2019 Tanida et al. published a second paper revisiting the
free energy calculation of theophylline−RNA aptamer complex,
this time focusing only on theophylline and not the other
analogs.28 The goal of this paper was to demonstrate how both
binding poses and binding affinities can be predicted for an RNA
ligand. In this paper, they first discover different binding poses of
theophylline in the experimentally known binding site with
metadynamics, compute the free energy of binding for six
different poses separately, and then estimate overall free energy
of binding with contributions from all poses. For the alchemical
protocol, they used 6 λ and 14 λ windows for gradually turning
off Coulomb and Lennard-Jones interactions sequentially with 2
ns equilibration and 6 ns production run per window. This
exhaustive protocol achieved a very accurate predicted binding
free energy for theophylline, exactly matching the experimental
binding affinity of −8.9 kcal/mol. It would be interesting to
explore how this approach would perform in ranking the binding
affinities of theophylline analogs. The metadynamics-based
determination of binding poses could be too challenging for
applying this method to tens of ligands at once due to the need to
engineer useful collective variables and monitor convergence.
We suspect docking-based pose predictions would be more
practical to implement for automated protocols designed to
compare many diverse ligands, although errors in the initial pose
might reduce the quality of the results. An alternative approach
could be resorting to nonequilibrium candidate Monte Carlo
steps to improve the sampling of ligand binding modes.72

Binding pose prediction and its effect on binding affinity
estimates were beyond the scope of our paper. For learning more
about recent improvements and remaining challenges of RNA
docking we recommend these two reviews.73,74

Both Tanida et al. studies mentioned above used Amber force
fields for RNA (ff99 and ff14SB), GAFF for ligand parameters,
and TIP3P for the water model. Our observations also support
their choice of ligand force field and water models. None of these
three studies have investigated the effect of simulation setup
decisions, such as including Mg2+ ions or approximating the
ionic strength of the experimental affinity measurements with
NaCl or KCl salts. So we hope our systematic comparison will
provide useful guidance for future applications of alchemical free
energy methods to RNA−ligand systems.
3.9. Limitations of This Study and Recommendation

for Future Work. It is important to acknowledge that only one
RNA target has been used in this study and that there are six
congeneric ligands. The suggestions we highlighted and found
useful in this study would surely benefit from being tested with a
diverse set of RNA targets and ligands before being considered
as general rules for modeling RNA−ligand binding. Because
absolute free energy calculations with RNA targets are largely
unexplored territory, we started with baby steps before
attempting to run with drug-like systems and therapeutic targets.

We chose the theophylline-binding RNA aptamer as the
target to study because of the availability of an experimental 3D
structure with at least one ligand and a simple hairpin structure.
Larger and more flexible RNA structures can pose difficulties for
free energy calculations, in terms of convergence and calculation
costs. The existence of prior studies on Mg2+ ion placement was
also helpful to us, guiding the possible positions we explored in
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this study. Mg2+ placement decision is expected to be much
harder for RNA systems that will be modeled for the first time.

The simplicity of its ligands was one of the most important
features that made us prefer this model system. The six
theophylline analogs are all neutral and rigid small molecules,
which are admittedly less challenging for free energy calculations
compared to a typical drug-like molecule. Therefore, the
prediction performance we observed in this model system can
be optimistic for ligands with higher complexity. The obvious
next steps to explore include checking how the performance
evolves with increasingly complex ligands, such as charged
ligands or ligands with rotatable bonds.

The dynamic range of ligand affinities of the current set poses
a limitation in being able to distinguish performance differences.
The free energy difference between the highest and lowest
affinity ligands in this data set is 5.51 kcal/mol, which is just
enough to be able to distinguish broadly good performance from
bad performance. A data set with a larger dynamic range of
affinities would have allowed us to have a more detailed
comparison between performance levels, but this was the
broadest ligand range we could find in any RNA system we
considered.

The small number of ligands studied in this work also limited
the analysis of confidence intervals of the performance metrics.
To estimate mean performance statistics and their 95%
confidence intervals (95% CI) we bootstrapped over six ligand
systems with replacement 1000 times and results are presented
in Table S1 and Figures S1−S5. Due to the low number of data
points, we see that most of the free energy methods have
overlapping confidence intervals. Only MM-GBSA methods
(Methods 20 and 21) show distinctly lower performance than
free energy methods in terms of RMSE and MAE with
nonoverlapping confidence intervals. With the current number
of systems, we cannot statistically prove that the performance
differences observed between different free energy methods are
statistically significant. However, expanding the study to more
ligands was not possible due to the lack of experimental data. We
chose to cautiously interpret any improvement in mean
performance statistics as guidance for better modeling decisions
and parameters.

We acknowledge that checking for nonoverlapping 95% CI is
recommended as the best practice for proving superior
performance of one method over another, but this type of
analysis is not feasible when the number of target−ligand
systems is as limited as in this study. Our only option was to be
guided by the mean performance statistics instead of the
confidence intervals. In this study, we did not compare different
tools and algorithms for the free energy calculations. We only
compared simulation conditions or parameter choices within
the same free energy calculation tool and same model system,
and therefore, we decided that trends in mean performance
metrics can provide us guidance on performance trends, even if
estimated 95% CI are overlapping. It would be beneficial for
future studies to expand this work with larger experimental data
sets and multiple model systems to test the generalizability of
our observations.

Currently, the ability to expand this study to a diverse set of
targets and small molecules is limited by the availability of
RNA−ligand benchmark sets and the cost of calculations. There
are a number of RNA−ligand complex structures in the PDB
Database based on X-ray or NMR measurements; however, it is
much harder to find RNA targets that have both experimental
3D structures and a series of known ligands with a sufficiently

large range of experimentally determined affinities and known
binding sites. The field of RNA-free energy calculations can
benefit from the construction of broader benchmark data sets
with large target and ligand diversity and a wide range of
affinities.

4. CONCLUSIONS
In this study, we evaluated the performance of absolute free
energy calculations for predicting the affinity of six theophylline
analogs to theophylline-binding RNA aptamer. The goal was to
understand the prediction performance of free energy
calculations for a simple RNA−ligand complex system. In
contrast to protein targets, running free energy calculations for
RNA targets is not common, and we wanted to learn about
specific modeling considerations that impact the success of
RNA-binding predictions. We used BFEE2 to automate the
execution of absolute binding free energy calculations. To the
best of our knowledge, this is the first application of BFEE2 to
free energy calculations of an RNA target. Systematic
exploration of various modeling decisions about Mg2+, salt
conditions, backbone restraints, ligand force fields, and water
models led to valuable insights. We observed that Mg2+

placement has a significant effect on the performance. Ignoring
Mg2+ ions or adding extra ions was detrimental to the predictive
performance. We showed that the prediction accuracy of the
best Mg2+ placement can be recapitulated by implementing
RMSD-based RNA backbone restraints. For the studied system,
restraining the RNA backbone throughout the free energy
calculation turned out to be a safer alternative to Mg2+

placement for managing RNA flexibility. Detailed modifications
to the BFEE2 protocol were provided for implementing
backbone restraints for the target molecule and to account for
it correctly in the thermodynamic cycle. We also observed that
RNA free energy calculations were sensitive to both ionic
strength and the identity of monovalent cation while mimicking
experimental buffer conditions led to the best results. Compared
to typical protein−ligand free energy calculations, calculated
free energies for the RNA target in this study showed much
higher variability. Therefore, it was necessary to obtain three
independent free energy estimates from three different runs for
each ligand and to calculate the final free energy estimate as the
mean. We also implemented a blind strategy to flag problematic
replicates, using quality criteria obtained from the simulations
themselves and not relying on experimental results. Our
observations on which simulation setup decisions led to better
free energy prediction performance will guide future free energy
calculations for RNA targets. However, it is important to
acknowledge that only one RNA target has been used in this
study and six neutral and rigid small molecule ligands. The
highlighted suggestions in this study would surely benefit from
being tested with a diverse set of RNA targets and ligands before
being considered as general rules for modeling RNA−ligand
binding. Currently, the ability to expand this study to a diverse
set of targets is limited by the availability of RNA−ligand
benchmark data sets, experimental RNA−ligand complex
structures, and the cost of calculations. Until larger studies can
be conducted, we hope that this systematic study of theophylline
aptamer system provides a starting point for scientists using free
energy methods to predict RNA-binding affinities and help them
understand the expected performance levels using a state-of-the-
art free energy method.
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