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I. INTRODUCTION

Biological lipid membranes are central to many biological processes. They
form selectively permeable barriers, allowing cells to control their contents and
create concentration gradients. However, in contrast to the totally passive view es-
poused by standard undergraduate texts, biological membranes also actively mod-
ify cell behavior by altering the function of membrane proteins, modulating the
stability of protein–protein associations, and altering the binding and distribution
of small molecules including salts and osmolytes (Jensen and Mouritsen, 2004;
Brown, 1994; White and Wimley, 1999; Epand, 1998, 2003; Mouritsen and
Bloom, 1993; Nyholm et al., 2007).

Membrane composition varies significantly in different tissues within a given
organism, emphasizing that the distribution of specific lipid species is not a mat-
ter of simple abundance. For example, rod outer segment disk membrane, found
in the mammalian visual system, contain roughly 50% polyunsaturated ω-3 fatty
acids; this is an enormous enrichment considering their natural abundance is more
like 5% (Boesze-Battaglia and Albert, 1989; Boesze-Battaglia et al., 1989) Since
humans are unable to synthesize ω-3s, this implies the body must be specifically
trafficking them to the disk membranes. Polyunsaturated lipids have been shown
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to significantly enhance the function of rhodopsin (which constitutes more than
90% of the protein in the disk membranes) (Mitchell et al., 2001; Niu et al., 2001;
Grossfield et al., 2006), clearly demonstrating that the cell is manipulating mem-
brane content in order to optimize function. The story gets even more interesting
when the concentration of cholesterol, which inhibits rhodopsin function, is con-
sidered: the concentration is high (25–30 mol%) in immature disks found near the
bottom of the rod outer segment stack, and is greatly reduced (5 mol%) in mature
disks (Mitchell et al., 2001; Niu et al., 2001, 2002; Pitman et al., 2005).

The last 20 years have seen a significant increase in attempts to model mem-
branes, and in particular to model their interactions with proteins and other
permeants. Conceptually, the simplest approach is to perform all-atom mole-
cular dynamics simulations; to our knowledge, the first example of a protein
modeled in an explicit lipid membrane was gramicidin in a DMPC bilayer, con-
ducted by Woolf and Roux (1994). Recent improvements in computer speed
have significantly changed the landscape of this field; where simulations were
once run for 100s of picoseconds, present technology allows us to run explicit
membrane systems for hundreds of nanoseconds (Grossfield et al., 2006) or
even microseconds (Martínez-Mayorga et al., 2006; Grossfield et al., 2007).
However, in order to reach these timescales, the calculations require extremely
powerful supercomputers (Allen et al., 2001), and even then, running long
enough to generate statistical convergence is difficult (Grossfield et al., 2007;
Faráldo-Gomez et al., 2004).

As a result, many interesting calculations can be expected to remain out
of reach of all-atom molecular dynamics for the foreseeable future. These in-
clude simulations of membrane protein folding and insertion, dimerization (or
oligomerization) of integral membrane proteins, and membrane poration by an-
timicrobial peptides. In each case, the time- and length-scales involved would
require prohibitively long simulations. In principle, one could trade temporal in-
formation for improved convergence by using enhanced sampling tools such as
replica exchange dynamics (Okamoto, 2004). However, while some such calcu-
lations have been reported for membranes (Nymeyer et al., 2005), this technique
is difficult to apply to bilayers because of the higher temperatures tend to disrupt
bilayer structure.

One approach which has garnered significant interest in recent years is the use
of coarse-grained molecular models, where the number of atoms per molecular is
strategically reduced and the interaction potential simplified, dramatically dimin-
ishing the computational cost of the calculations and concomitantly increasing
the feasible simulation size and time. However, these methods will be discussed
extensively elsewhere in this volume, and so we will not explore them here.

An alternative approach is to combine a continuum representation of the mem-
brane with a atomic representations of the rest of the system. This scenario allows
us to focus our computational effort on the portion of we are most interested
in, for example the membrane protein whose folding we wish to explore. Rep-
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resenting the membrane implicitly has a number of significant advantages, the
most important of which is computational efficiency: as a rule, implicit models
are dramatically less expensive per energy evaluation than the equivalent all-atom
systems. Moreover, these models generally produce an approximation to the sol-
vation free energy of the system, as opposed to simply the potential energy as
computed in an all-atom system. As a result, no additional sampling of environ-
mental degrees of freedom is required for a fixed solute structure. This savings
is significant when one considers the nanosecond to microsecond relaxation and
reorganization times of explicit lipid membranes. Finally, the absence of explicit
“solvent” molecules simplifies conformational searching and enhances the power
of sampling techniques like replica exchange.

The primary tradeoff in using implicit membrane models is their presumed lack
of high-resolution accuracy; almost by definition, replacing all-atom models with
analytic formulas sacrifices a certain level of detail. Thus, the key question be-
comes: what physical characteristics of the membrane must be reproduced in our
membrane models to yield physically correct behavior of membrane permeants?
The answer, of course, depends on the details of the system being considered, and
the scientific questions asked. A model could simultaneously be well suited for
some circumstances and wholy inadequate in others.

II. CLASSES OF MODELS

Lipid membranes self-assemble in an attempt to isolate hydrophobic acyl
chains from the surrounding aqueous environment. Under appropriate conditions,
this leads to the formation of stable bilayers, with a hydrophobic core, and in-
terfacial region containing a mixture of polar headgroups and water, and the
surrounding aqueous medium. Despite this apparent simplicity, biological mem-
branes are capable of remarkable diversity of structure and dynamics. Although
many models focus on a single property—the thickness of the hydrophobic core—
real membranes have a broad range of physical characteristics which vary with
lipid composition. These include structural quantities such as surface area per
lipid, chain order, intrinsic curvature, and pressure profile, as well as dynamic
properties such as the dielectric profile, diffusion coefficients, and chain and head-
group reorientation relaxation times.

Moreover, these properties are not independent of each other. For example,
changing the hydration levels of model membranes modulates the surface area per
lipid, and thus the chain order parameters. However, lipid surface area can also be
controlled by varying the headgroup type, the length and degree of unsaturation
of the chains, and the presence of other membrane permeants, such as cholesterol.
The surface area per lipid in turn affects the magnitude of headgroup–headgroup
interactions and, particularly in the case of charged headgroups, the distribution
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of ions near the membrane surface. All of these properties can in principle affect
the binding, conformation, stability, and oligomerization of peptides and proteins.

Thus, one critical question is, which of these membrane properties must be
included to generate a successful implicit membrane model? Unfortunately, there
is no simple answer to this question, as the answer depends largely on the model’s
intended use.

For example, if one plans to model a membrane protein using an all-atom rep-
resentation, then effectively including the electrostatic effects of the membrane is
probably paramount. If instead one wishes to use a simpler rigid-cylinder model
for an embedded alpha helix then other issues become more important. As a di-
rect result of this diversity, many different approaches to implicit modeling have
emerged in the literature. For purposes of discussion, we have divided them into
two broad classes: Solute-focused and Membrane structure-focused. Obviously,
these labels represent something of a simplification, but we think this classifica-
tion is on the whole helpful, in that it provides a context for understanding recent
work.

A. Solute-Focused

This section will describe models best characterized as “solute-focused”. By
this, we mean models where the solute—typically a protein, peptide, or small
molecule—is considered with atomic or near-atomic resolution, and the mem-
brane is largely a backdrop intended to provide an appropriate venue. As a rule,
these models neglect details of membrane structure other than the thickness of
the hydrophobic low-dielectric core, and contain few provisions to account for
the solute’s disruption of membrane structure. Instead, these methods tend to fo-
cus on the membrane–solute interactions and the ways in which the membrane
modifies solute–solute interactions, especially via electrostatics.

Although membrane electrostatics will be discussed in a separate chapter of this
book, one cannot adequately introduce this class of implicit membrane models
without first reviewing electrostatic and dielectric theory as applied to mem-
branes. Indeed, one of the most pervasive concepts in membrane modeling is the
notion of a low dielectric slab embedded between semi-inifinite regions of high
dielectric. For this reason, we begin by considering the simplest circumstance,
a spherical charge in an infinite uniform dielectric. The charging free energy for
a charge q in a sphere of radius a embedded in a region of dielectric ε can be
computed by integrating the electric field over all volume outside the sphere

(1)�G = 1

8π

∫
εE2 dV = 1

8π

∫ ∞

a

ε

(
q

εr2

)2

4πr2 dr = − q2

2εa

generating the familiar Born equation (Born, 1920). This derivation can be gen-
eralized for the case of a permanent (Bell, 1931) or polarizable (Bonner, 1951)

ctm60 v.2008/03/05 Prn:17/03/2008; 16:30 F:ctm605.tex; VTEX/Rita p. 4
aid: 5 pii: S1063-5823(08)00005-7 docsubty: REV



5. Implicit Modeling of Membranes 135

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

dipole (the so-called Onsager equation), or for an arbitrary charge distribution
(Kirkwood, 1939).

However, the situation becomes somewhat more complex when the environ-
ment itself becomes heterogeneous, as is the case in a membrane. The electrostatic
field due to a point charge approaching the barrier between two semi-infinite di-
electric slabs is easily computed using the method of images (Jackson, 1962), and
from this one can compute the charging energy. However, this solution contains
an unphysical divergence as the charge approaches the dielectric interface due
to the point charge approximation. This divergence, which appears repeatedly in
the development of membrane models, was resolved by Ulstrup and coworkers
by converting the volume integrals into surface integrals and directly accounting
for the intersection between the ion surface and dielectric interface (Kharkats and
Ulstrup, 1991). The result for an ion a distance h > a from the interface is

�G = − q2

8ε1a

{
4 +

(
ε1 − ε2

ε1 + ε2

)(
2

h/a

)

(2)+
(

ε1 − ε2

ε1 + ε2

)2[ 2

1 − (h/a)2
+ 1

2h/a
ln

(2h/a) + 1

(2h/a) − 1

]}

while the result for 0 � h � a, where the ion overlaps the dielectric interface, is

�G = − q2

8ε1a

{(
2 + 2h

a

)
+

(
ε1 − ε2

ε1 + ε2

)(
4 − 2h

a

)

+
(

ε1 − ε2

ε1 + ε2

)2[
(1 + h/a)(1 − h/a)

1 + 2h/a
+ 1

2h/a
ln(1 + 2h/a)

]}

(3)+ q2

4ε2a

(
2ε2

ε1 + ε2

)(
1 − h

a

)
.

The same authors also derived analytic solutions for the charging free energy
for a spherical charge in the presence of a slab of low dielectric surrounded by
semi-infinite regions of higher dielectric, albeit without the finite ion size cor-
rections (Iversen et al., 1998). However, this solution involves several infinite
sums, and is thus cumbersome to implement computationally, although Flewelling
and Hubbell devised an efficient approximate solution (Flewelling and Hubbell,
1986). Krishtalik took this approach one step further, deriving an analytical solu-
tion for the case where there are 5 distinct dielectric regions (2 high-dielectric
water regions, 2 moderate-dielectric interfacial regions, 1 low dielectric core)
(Krishtalik, 1996). Previously, Parsegian published analytic solutions to several
simple problems related to ion permeation through membranes (Parsegian, 1969).

Since analytic approaches are only readily applicable to simple geometries such
as spheres, numerical methods are necessary in order to treat more biologically-
relevant systems. The most obvious approach is to numerically solve the Poisson
equation (or, if salt effects are to be included, the Poisson–Boltzmann equation)
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(Schnitzer and Lambrakis, 1991; Sharp and Honig, 1990; Murray et al., 1997;
Lin et al., 2002)

(4)∇ · ε(�r)∇Φ(�r) = −4πρ(�r),
where Φ is the electrostatic potential, ε(�r) is the position-dependent dielectric
constant, and ρ is the charge density (typically represented by a finite number of
point charges qi). Once this equation has been solved, the electrostatic free energy
can be computed as

(5)�Gelec = 1

2

∫
ρ(�r)Φ(�r) dV = 1

2

charges∑
i

qiΦi,

where Φi is the electrostatic potential at the location of the ith charge. There is an
extensive literature on the application of this formalism to biomolecular problems,
so instead of reviewing it here we will simply suggest readers consult the recent
review by Baker and the references cited there (Baker, 2005).

Several groups have directly applied the Poisson–Boltzmann approach to
membrane-protein association thermodynamics. For example, Ben-Tal et al. used
it to examine the thermodynamics of α-helix insertion, representing the mem-
brane as a simple low dielectric slab (Ben-Tal et al., 1996). Murray and coworkers
explicitly included the lipid headgroups in their calculations (Murray et al., 1997);
this was particularly important in later work examining the association of basic
peptides with anionic lipid bilayers (Murray et al., 1999).

Computing the electrostatic solvation free energy via the Poisson equation has
a number of distinct advantages: it is directly seated in electrostatic theory, and
within the limits of the dielectric assumption and numerical accuracy it is cor-
rect. However, there are a number of drawbacks. Historically, the finite-difference
approaches typically used are relatively expensive, and computing forces suffi-
ciently accurate for use in molecular dynamics was difficult. Recently, progress
has been made in some of these areas (Lu et al., 2005a, 2005b; Feig et al., 2004),
but for many applications rigorous Poisson electrostatics are still prohibitively
expensive. Moreover, unless headgroups and some waters are explicitly included,
this approach does not reproduce the correct sign of the electrostatic potential at
the center of the lipid bilayer, which is thought to be crucial in the thermodynam-
ics of many membrane permeants (Lin et al., 2002).

As a result, significant effort has been invested in developing faster, if more
approximate, methods for computing electrostatic energies in dielectric media.
Many of the most commonly used methods are variants of the generalized Born
approach originally developed by Still and coworkers (Still et al., 1990). Although
these developments have been the subject of several recent reviews (Bashford and
Case, 2000; Feig et al., 2004), the underlying techniques and assumptions become
relevant when the formalism is expanded to cover membranes, so we will discuss
it here as well.
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Most generalized Born methods are built around the empirical solvation free
energy expression suggested by Still et al. (Still et al., 1990)

(6)�G = −
(

1 − 1

ε

) Natoms∑
i,j

qiqj√
r2
ij + αiαj exp(−r2

ij /4αiαj )
,

where qi is the partial charge on the ith atom, the sum is over all atom pairs (in-
cluding self-interaction) and αi is the ith generalized Born radius. The radii are
constructed by computing the electrostatic free energy to solvate each charge indi-
vidually in the protein, and then plugging that free energy into the Born equation
(Eq. (1)) to extract an effective radius. The free energy is computed assuming the
protein is a region of low dielectric, usually 1, and only the atom under considera-
tion is charged. As a rule, the Coulomb field approximation is invoked to simplify
the calculation; that is, the electric field due to the charge is presumed to be undis-
torted by the surrounding dielectric boundary. The result is volume integral over
all space excluding the atom itself. This can be converted to a difference between
two volume integrals, one over all space outside the atom, and the other only over
the volume outside the atom but inside the protein

(7)
1

αi

= 1

Ri

− 1

4π

∫
solute,r>Ri

1

r4
dV.

Although Eq. (6) appears to contain only pairwise interactions, many-body ef-
fects are included implicitly via the volume integral in Eq. (7).

The key to the effectiveness of the Generalized Born method is the calcula-
tion of the effective Born radii; recent work has shown that if “perfect” radii
are used—the electrostatic free energy of each atom is computed numerically
using a standard Poisson solver—then Eq. (6) does an excellent job repro-
ducing the molecular solvation energies computed using the Poisson equation
(Lee et al., 2002), which in turn does a good job reproducing the electrosta-
tic portion of the solute–solvent interaction from explicit solvent simulations
(Wagoner and Baker, 2004). The original Still formulation used a numerical in-
tegration over the protein volume, which was expensive and was ill-suited to
computing forces suitable for molecular dynamics calculations. Many groups
developed better approaches to performing this integral, including pairwise ap-
proximations (Bashford and Case, 2000; Feig et al., 2004), various numeri-
cal schemes (Srinivasan et al., 1999; Lee et al., 2002, 2003; Grycuk, 2003;
Tjong and Zhou, 2007), and a reformulation as a surface integral (Ghosh et al.,
1998; Gallicchio et al., 2002). Some groups also added corrections intended
to improve on the Coulomb field assumption (Lee et al., 2003; Grycuk, 2003;
Tjong and Zhou, 2007)

The situation becomes significantly more complex when one considers a mem-
brane environment, because in that instance energies and forces depend not only
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on the relative position of the atoms but on their absolute location in the mem-
brane. To our knowledge, the first membrane model explicitly based on the
generalized Born formulation was due to Spassov et al. (Spassov et al., 2002).
Their approach, which they call GB/IM, includes the heterogeneous dielectric
environment by considering the membrane interior to have the same dielectric
as the protein, with the result that the volume integral over the embedded por-
tion is replaced by an integral over the whole of the membrane interior, which
is approximated by an analytic function fit to Poisson–Boltzmann results. The
remaining protein volume is integrated using the efficient pairwise method of
Dominy and Brooks (Dominy and Brooks, 1999). They applied their method-
ology rigid structures of bacteriorhodopsin and rhodopsin, and performed a short
dynamics simulation of the influenza fusion peptide bound to the membrane.

Im et al. (2003a) took a related approach. They extended previous work from
the Brooks group (Im et al., 2003b), where numeric behavior of the volume in-
tegration was improve by use of a smoothing function, and, like Spassov et al.
(2002), considered the membrane to be part of the protein interior. Their ap-
proach contained analytic corrections to the Coulomb field assumption originally
designed for soluble proteins. They validated their results by examining the be-
havior of several membrane-binding peptides, including melittin, M2-TMP, and
the glycophorin A dimer, comparing against Poisson–Boltzmann calculations and
experimental structural information. The same model was later used to explore the
folding and insertion of several designed helical transmembrane peptides (Im and
Brooks, 2005).

Although both of these methods appear to perform well in practice, the assump-
tion that the membrane and protein have the same dielectric is troubling. Because
the protein charges are explicitly represented, one would expect the continuum
dielectric inside the protein to be 1, as done for simulations where both solute and
solvent are explicitly represented; the force field parameters are chosen with this
application in mind. By contrast, the membrane interior has a dielectric of 2–4.

Feig and coworkers introduced a formalism to explicitly handle multiple di-
electric environments (Feig et al., 2004), and later applied it membrane modeling
(Tanizaki and Feig, 2005, 2006). This model, called the heterogeneous dielec-
tric generalized Born or HDGB, contains several notable technical advancements.
First, the membrane representation is improved: the chemical heterogeneity of the
membrane–water interface (Jacobs and White, 1989) is explicitly included in the
calculation by modeling the membrane as a series of dielectric slabs, rather than
just two regions. They computed the free energy profile for a test charge in this
model using the Poisson–Boltzmann equation and used the results to spline-fit an
effective dielectric constant profile to be used in the simulations. While the phys-
ical meaning of a bulk quantity like the dielectric varying smoothly on atomic
lengthscales is unclear, the result is a formalism which accurately recapitulates a
more realistic model for membrane electrostatics. Moreover, this method is built
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on top of a rigorous volume integration scheme (Lee et al., 2003), and has been
very carefully parameterized and characterized.

However, this careful characterization revealed some unfortunate complica-
tions when applying this model to larger molecules, such as a bacteriorhodopsin
monomer or trimer. Tanizaki and Feig found that the results were very sensi-
tive to the long range electrostatics cutoff, oscillating over a range of hundreds
of kcal/mol (Tanizaki and Feig, 2006); this can result in almost comic failures,
where setting the electrostatic cutoff at a seemingly reasonable 16 Å causes the
bacteriorhodopsin monomer to be most stable in a horizontal orientation, with the
helices lying in the plane of the membrane and the loops embedded in the mem-
brane core. These effects go away with a sufficiently long cutoff, in the range
of 36–38 Å, but the result is a dramatic increase in the computational cost. Al-
though this problem has not been reported with the other methods discussed here,
it seems likely that the underlying mechanisms will be present in all of them.

To this point, we have focused entirely on the electrostatic components of these
models. This is of course incomplete; all of these models, whether intended for
bulk solvent or specific to membrane modeling, contain at least one additional
term representing non-electrostatic effects. Most follow the traditional approach
from bulk solvent modeling and assume that these interactions can be related to
the solvent accessible surface area. This approximation makes intuitive sense, and
has some theoretical basis in the scaled-particle theory of hard sphere solvation
(Pierotti, 1976). However, several groups have argued that nonpolar solvation,
which includes terms from cavitation, hydrophobic effects, and favorable van der
Waal’s interactions, requires a somewhat more subtle treatment (Gallicchio et al.,
2002; Levy et al., 2003). Wagoner and Baker showed that a significant fraction of
the error in continuum methods, when compared to explicit solvent calculations,
was due to the treatment of the non-electrostatic components, and that including
terms to explicitly account for volume effects and attractive solute–solvent inter-
actions greatly improved the situation (Wagoner and Baker, 2006).

The situation is—at least in principle—far more complex in the context of
a lipid bilayer. Lipid acyl chains are far larger than water molecules, and un-
like bulk solvent, these chains have a net orientation. As a result, cavitation
effects should arguably have some additional shape and location dependence.
Furthermore, the largely anhydrous environment means that hydrophobic inter-
actions should likely be neglected in the membrane core, but other nonpolar
terms, such as favorable solute–solvent dispersion interactions and solvent en-
tropy remain. Finally, molecules permeating the lipid bilayer feel a lateral pressure
profile; this pressure varies significantly not only with location in the mem-
brane but also with membrane composition (Carrillo-Tripp and Feller, 2005;
Ollila et al., 2007; Cantor, 1999a), and may have functional implications (Cantor,
1997a, 1997b, 1999b; Pitman et al., 2005).

Still, most of the methods discussed above model nonpolar interactions strictly
on the basis of solvent accessible surface area, usually parameterized to repro-
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duce partitioning free energies from water to liquid alkane and combined with
a position-dependent scaling factor which turns the interactions off in the mem-
brane interior. However, even within this genre, there are some interesting varia-
tions. Tanizaki and Feig (2005) attempted to capture position dependent effects by
fitting the effective surface tension in the membrane to the potential of mean force
of O2 permeating an explicit lipid bilayer (Marrink and Berendsen, 1996). As a
result, this parameterization accounts for variations in cavitation and dispersion
with membrane depth.

Ben-Tal et al. (1996) took a different approach in their calculations exploring
rigid helix insertion into lipid bilayers; while they did use an area term, they also
included a term to account for lipid disruption, based on chain statistics calcula-
tions from Fattal and Ben-Shaul (1995). However, the inclusion of this term relies
on the rigid-body nature of the calculation, since it is derived by treating the helix
as a featureless cylinder.

Lazaridis took an entirely different approach in developing his implicit mem-
brane model. IMM1 (Lazaridis, 2003), which is a generalization of the EFF1
solvation model (Lazaridis and Karplus, 1999) to a membrane environment. EFF1
consists of a distance-dependent dielectric combined with a pairwise, distance-
dependent solvation term. IMM1 adds an explicit position-dependent atomic
potential, parameterized to reproduce liquid-hydrocarbon transfer free energies
of model compounds, combined with an enhancement of the electrostatic in-
teractions in the bilayer interior. Although there is little theoretical justification
underlying the functional forms of the model, it is easy to compute, and dynamics
trajectories on systems such as the glycophorin A dimer, a helix isolated from bac-
teriorhodopsin, and several membrane-binding peptides all produced qualitatively
reasonable results. In a later paper, IMM1 was further generalized to represent
the internal water in a simulation of a transmembrane β-barrel protein (Lazaridis,
2002).

Several groups have also developed purely empirical implicit membrane mod-
els. For example, IMPALA model of Ducarme et al. (1998) applies simple atom-
restraints, parameterized to reproduce partitioning experiments, independent of
molecular context. This method is essentially free computationally, but has a
number of unphysical implications, most notably that atoms of a given type feel
exactly the same membrane forces whether on the surface of the molecule or
buried in the interior. As a result, such a method is completely incapable of re-
producing basic phenomena such as the stabilization of helical structure by the
membrane environment. The same complaint can be made about the model from
Sanders and Schwonek, although that model succeeds admirably in its stated goal
of reproducing binding thermodynamics of small rigid molecules (Sanders and
Schwonek, 1993).

Efremov et al. (1999a, 1999b) developed a model based entirely on solvent ac-
cessible surface area, generalizing the atomic solvation parameters of (Eisenberg
and McLachlan, 1986). Initially, their models were parameterized to reproduce
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low dielectric bulk solvent like hexane (Efremov et al., 1999a) and octanol
(Efremov et al., 1999b), although later studies introduced spatial heterogeneity
(Efremov et al., 2002; Vereshaga et al., 2007). These models produce qualita-
tively correct behavior, for example stabilizing α-helices, but as with the original
atomic solvation parameters are not quantitatively accurate.

Of course, conceptually simple models are not to be disdained solely on that
account. Rather, the goals and assumptions of the calculation must always be
considered. For example, Pappu et al. showed they were able to find the correctly
packed dimer structure of glycophorin A by representing the membrane as an
infinite dielectric (no electrostatics at all) and a spring to prevent helix flipping
(Pappu et al., 1999).

B. Membrane-Focused

In contrast to the methods discussed in Section II.A, the methods presented in
this chapter are largely focused on understanding the effects of membrane struc-
ture on the behavior of bound molecules. As a rule, the solute representations are
not as detailed, but more care is taken to retain information about the membrane.
In general, these models are intended in large part to describe the variation of
membrane-solute interactions as a function of membrane composition, phenom-
ena that are largely neglected by the models described previously.

The present class of models can be further divided into two subclasses: contin-
uum models and chain models. The former class represents the membrane using
some form of continuum mechanics based on some bulk property, e.g. hydropho-
bic thickness, while the latter attempts to build toward macroscopic predictions
via a microscopic consideration of chain statistics.

The best known of the continuum models is the “mattress model” of Mouritsen
and Bloom (Mouritsen and Bloom, 1984; Jensen and Mouritsen, 2004). In this
approach, the lipids (and any additional membrane components, such as trans-
membrane proteins) are represented primarily as coupled springs with variable
hydrophobic thickness. By assigning equilibrium thicknesses to the lipids and
protein in specific phases, the elastic energy can be computed as

(8)Hα
Elastic = nα

LAα
L

(
dα
L − d

0,α
L

)2 + nα
P Aα

P

(
dα
P − d

0,α
P

)2
,

where nα
i is the number of molecules of i in phase α, A is the effective force con-

stant for thickness deformations, di is the hydrophobic thickness of molecules of
type i, and d

0,α
i is the equilibrium thickness of molecules of type i in phase α.

Specific protein–lipid interactions can also be included, such as hydrophobic mis-
match

(9)Hα
hydro = nα

Lnα
P

nα
L + nα

P

Bα
LP

∣∣dα
L − dα

P

∣∣
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and favorable adhesion

(10)Hα
adhes = nα

Lnα
P

nα
L + nα

P

Cα
LP min

(
dα
L, dα

P

)
,

where B and C are the positive and negative interaction coefficients for the re-
spective terms. These energy terms constitute the excess enthalpy for the system,
which can then be combined with the free energy for an ideal mixture to compute
the free energies for different states. Thus, one can use the mattress model ex-
amine the effects of membrane permeants on lipid structure (and vice versa). For
example, the original paper focuses on the effects of different “proteins” on the
lipid phase diagram (Mouritsen and Bloom, 1984). In part because of its lack of
atomic-level details, this model has been very successful in interpreting and sug-
gesting experiments, particularly those involving designed single transmembrane
helices such as the WALP and KALP families (Nyholm et al., 2007).

However, the mattress model is neither the only nor the first continuum model
for lipid–protein interactions. To pick one representative example, we consider
the work of Owicki and McConnell, who used Landau–de Gennes theory to con-
sider lipid–protein interactions in terms of order parameters related to the lipid
gel–liquid phase transition (Owicki et al., 1978; Owicki and McConnell, 1979).
Their model describes mechanisms by which different lipid species could alter
protein–lipid and even protein–protein interactions. However, the utility of the
work is somewhat limited by its mandate that the protein be evenly distributed in
the membrane, and by its focus on the notion of an annulus of boundary lipids
surrounding the protein.

Brown and coworkers have proposed an alternative continuum formulation.
Inspired by the unusual lipid composition of retinal rod outer segment disk mem-
branes, with high concentrations of non-lamellar-forming lipids, they focused on
spontaneous curvature of the membrane rather than simple hydrophobic matching
(Gibson and Brown, 1993; Brown, 1994, 1997). When applied to the Meta-
I/Meta-II equilibrium of photoactivated rhodopsin (Endress et al., 2002), this
model suggests that the lipid-composition dependent portion of the free energy
change can be written as

(11)�G0 = κ
[(

HL
MII − HL

0

)2 − (
HL

MI − HL
0

)2] + γLP
(
AP

MII − AP
MI

)
,

where HL
i is the mean curvature of the membrane with the protein in state i,

γLP is the lipid–protein surface tension, and AP is the exposed area of the pro-
tein, believed to increase upon formation of Meta-II. More recently, this model
was used to argue for the role of spontaneous curvature in modulating rhodopsin
aggregation as well as function (Botelho et al., 2006). This work proposes that in-
creased protein concentration and decreasing bilayer thickness alter rhodopsin’s
properties via the same mechanism, a competition between curvature strain and
hydrophobic matching.
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By contrast, another subclass of models focused on the statistical physics of the
lipid chains. In fairness, these two subclasses are not as distinct as they appear:
chain states are invoked in the derivation and parameterization of the continuum
models, and the results derived from the chain models, especially in the mean-
field approximation, point back toward quantities used in the continuum methods.

A useful starting place to review chain-based models is the work of Marc̆elja
(1974, 1976). His model considers the membrane as a set hexagonal of lattice
sites, each of which contains a single lipid molecule. Each lipid is characterized
by a molecular order parameter

(12)ηj =
〈

1

n

∑
m

(
3

2
cos2 νm − 1

2

)〉
j

,

where n is the number of carbon segments in the chain νm is the orientation of the
mth segment. Lipid–lipid interaction is represented in the molecular field approx-
imation, summing over nearest neighbors

(13)Φi = 1

6

6∑
j=1

V0φj ,

where

(14)φj =
〈
ntr

n2

∑
m

(
3

2
cos2 νm − 1

2

)〉
j

and ntr/n is the fraction of trans states, V0 is the coupling constant, and Φi de-
scribes the strength of the molecular field acting to orient the molecule at site i. If
there is a protein molecule at a neighboring site, a term in Eq. (13) is replaced by
the lipid–protein interaction Vlp (Marc̆elja, 1976). Thus, the total energy for the
ith position in the lattice is

(15)Ei(Φi, P ) = Eint − Φi

(
ntr/n2) ∑

m

(
3

2
cos2 νm − 1

2

)
+ PA

is dependent on the chain’s internal energy Eint, the cross-sectional area A and
lateral pressure P . The partition function for the ith chain is

(16)Zi =
∑
confs

exp
[−Ei(Φi, P )/kBT

]
.

Thus, the average orientations for all chains can be calculated by solving the fol-
lowing set of coupled non-linear differential equations

(17)φi = 1

Zi

∑
confs

ntr

n

∑
m

(
3

2
cos2 νm − 1

2

)
exp

[−Ei(Φi, P )/kBT
]
.
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The total internal energy thus becomes

(18)U =
∑

i

[
Eint − nΦiφi/2

] + Vlp

∑
lp pairs

nφi/12,

where the latter term is necessary to correctly account for protein–lipid interac-
tions in the hexagonal lattice.

Writing the total system partition function as the product of the individual par-
tition function in Eq. (16), and combining with Eq. (18), it is straightforward to
write the system’s entropy and Gibbs free energy.

This formalism can be used to investigate the effects of a protein on lipid
structure as a function of temperature, protein size, and concentration. Most inter-
estingly, one can compute the effective protein–protein potential of mean force;
in this manner, a Marc̆elja-type model can be used to explore the effects of lipid
composition on protein oligomerization and aggregation. Several other groups
have explored similar models, differing primarily in the details of lipid chain rep-
resentation and the manner in which the resulting equations are solved (Meraldi
and Schlitter, 1981; Pink and Chapman, 1979).

More recently, Ben-Shaul and coworkers have developed a comprehensive
membrane model which explicitly account for chain statistics (Fattal and Ben-
Shaul, 1993, 1994, 1995). They begin by expressing the system’s free energy as a
sum of three terms

(19)F = 2N(ft + fs + fh),

where N is the number of lipids per leaflet (the present equation assumes a sym-
metric planar bilayer), ft is the free energy per lipid chain, fs the surface free
energy due water–chain interaction, and fh is the free energy due to headgroup–
headgroup and water–headgroup interactions. Describing individual chain confor-
mations using the rotational isomeric approximation combined with an overall tilt
vector, the probability distribution P over all conformations α can be constructed,
and the chain free energy computed as

(20)ft =
∑
α

P (α)ε(α) + kBT
∑
α

P (α) ln P(α),

where ε(α) is the internal energy of conformation α. P(α) is constrained to obey

(21)
∑
α

P (α) = 1,

(22)
∑
α

P (α)
[
φ(zi; α) + φ(−zi; α)

] = aρ, for all zi .

The first equation represents a simple normalization of probability. In the latter,
φ(zi; α) is the atomic number density of conformation α in the membrane slice
zi , a is the area per chain, and ρ is density of the bilayer interior. Equation (22)
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explicitly assumes constant density in the hydrophobic interior of a symmetric
planar bilayer, but can be easily generalized to account for heterogeneous density
drawn from experiment, or to deal with more complex geometries such as curved
bilayers or micelles.

Minimizing Eq. (20) with respect to Eqs. (21) and (22) gives

(23)P(α) = exp[βε(α) − β
∑

zi
π(zi)φ(zi; α)�z]∑

α exp[βε(α) − β
∑

zi
π(zi)φ(zi; α)�z] ,

where β ≡ 1/kBT , the denominator is the chain partition function Z, and π(zi)

are a series of Lagrange multipliers physically corresponding to the lateral pres-
sure profile along the membrane normal. Substituting back into Eq. (20) generates

(24)ft = kBT ln Z − aρ
∑
zi

π(zi)�z.

Thus, calculating any chain property amounts to computing the appropriate
π(zi) values for the system. This model has a number of desirable properties, most
notably the direct dependence of the chain thermodynamics on the headgroup
type, via the surface area per chain a. This area can in turn be considered as a
variable, which is where the latter two terms in Eq. (19) come into play.

In addition to considering alternative membrane geometries, this model can
also be generalized to include the effects of other molecules included in the
bilayer. Ben-Shaul and coworkers considered simple protein models such as im-
permeable walls and cylinders (Fattal and Ben-Shaul, 1995), while other groups
have used analogous approaches to consider protein–protein interaction (May and
Ben-Shaul, 2000; Bohinc et al., 2003). The lateral pressure profile computed in
this model can be directly connected to the intrinsic curvature described in the
models from Brown and coworkers, in that heterogeneity in the pressure leads
directly to a preference for intrinsic curvature. As we will see below, this is a
repeating theme in chain-based models of membranes.

Frink and Freschknecht (2005a, 2005b) have used a simple coarse-grained
chain representation combined with density functional theory to compute lipid
bilayer properties. Although the details of their formulation are too complex to
describe here, it is interesting to note that once again the lateral pressure pro-
file plays a central role. They have applied their model to explore the effects of
alcohols on lipid structure (Frischknecht and Frink, 2006), and to explore pore-
formation due to the binding of rigid helices (Frink and Frischknecht, 2006). By
contrast to the models described in Section II.A, their model allowed them to
compare different modes of pore-formation.

Over the last 15 years, Cantor has presented a series of papers describing an-
other chain-based model focused on the lateral pressure profile (Cantor, 1993,
1996, 1997a, 1997b, 1999a, 1999b, 2002). His approach uses a lattice model to
account for chain conformations, with a constant density assumption similar to
that of Ben-Shaul. He has used his model to explore the effects of chain length
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and unsaturation on the equilibrium width, area fluctuations, and lateral pressure
profile of planar lipid bilayers (Cantor, 1999a). He has also proposed that lateral
pressure is a common mechanism by which bilayer composition can be used to
regulate protein function (Cantor, 1999b, 2002). Specifically, if a protein has two
states with different shapes in the membrane, then the free energy difference be-
tween the two states is

(25)�G12 = �G0
12 −

∫
π(z)

(
A2(z) − A1(z)

)
dz,

where �G0
12 is the intrinsic free energy difference between the states, excluding

bilayer effects, Ai(z) is the area profile for the protein in state i, and π(z) is the
lateral pressure profile. The last term in Eq. (25) provides a direct mechanistic
coupling between the lateral pressure profile (and thus lipid composition) and the
protein’s conformation equilibrium even in the total absence of specific lipid–
protein interactions. Cantor has also proposed that this model provides a simple
framework for understanding the mechanism of most general anesthetics (Cantor,
1997b, 2001).

III. INTERESTING PROBLEMS IN IMPLICIT MEMBRANE MODELING

There has been a great deal of work to develop models for implicitly model-
ing membrane–protein interactions. This work spans a broad range of different
approaches, each with different strengths and weaknesses. In particular, the meth-
ods described in Section II.A have the advantage of using atomic descriptions
of the solute of interest; this means that subtle differences, such as the effects
of mutations or chemical modifications, can be directly examined. However, the
membrane is usually represented in a very simple manner, and non-electrostatic
effects in particular are not included in detail. As a result, these models do not as
a rule capture the effects of lipid composition, except crudely via the hydrophobic
thickness of the membrane. Moreover, if solute binding is correlated with disrup-
tion of membrane structure, these models will not capture it, since these models
explicitly assume membrane structure is invariant. By contrast, the models in II.B
represent membrane-bound solutes in far less detail, but do far more to include
the effects of lipid chain structure. However, they typically lack atomic detail and
tend to represent lipid–protein interactions phenomenologically. As a result, they
cannot easily be used to resolve questions which depend on the details of solute
structure. This means that there are many interesting problems which will require
new approaches combining the strengths of the existing solute-centric models
with better representations of membrane structure.
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A. Antimicrobial Peptides

Antimicrobial peptides (AMPs) are an ancient immune mechanism, ubiquitous
in multicellular organisms and even found in some bacteria (Zhang et al., 2000;
Risso, 2000; Zasloff, 2002a, 2002c, 2002b). In humans, they are found mostly on
exposed organs, such as the eyes, skin, and mouth. Unlike the rest of the immune
system, these peptides generally act in a non-inflammatory way. This is critical,
as organs such as the eyes are constantly exposed to pathogens, and permanent
inflammation would seriously degrade their performance.

AMPs exhibit a broad diversity of structures, ranging from single helices to β-
strands to small globules (Zasloff, 2002c). However, the vast majority of them
share two characteristics: amphipathic structure and positive charge. The for-
mer quality encourages binding to the membrane–water interface, while the latter
enhances selectivity toward bacterial membranes, which tend to be enriched in
anionic lipids compared to the zwitterionic lipids most common in mammalian
cells. Interestingly, transformed cancer cells also have a higher concentration
of anionic lipids, and some AMPs have been shown to have antitumor activity
(Jacob and Zasloff, 1994; Mader and Hoskins, 2006). Lipopeptides have also
found use in the development of vaccines (BenMohamed et al., 2002). The bio-
physics of AMPs binding to lipid membranes have been extensively reviewed
(Epand and Vogel, 1999; Shai, 1999; Huang, 2000, 2006; Doherty et al., 2006;
Chan et al., 2006).

Unlike most other classes of drugs, AMPs do not inhibit enzymatic pathways,
or indeed specifically bind any proteins in their targets. Rather, they operate by
binding to and disrupting the membrane (Boman et al., 1994). As a direct result,
pathogens such as bacteria, fungi and viruses are far less likely to evolve immunity
to them, because doing so would require changing the lipid composition of their
membranes and likely disrupting many of their own native proteins.

Despite this, AMPs have not for the most part found much use as antibi-
otic drugs, because they are relatively hard to synthesize and tend to break
down rapidly in the body. However, in recent years, scientists have borrowed
from the basic properties of AMPs to design new potential drugs, for exam-
ple using peptide mimetics (see for example Ref. (Ishitsuka et al., 2006)). Shai
and coworkers have had remarkable successes by combining two strategies:
including D-amino acids to foil peptidases (Avrahami and Shai, 2003), and
conjugating shorter peptides to fatty acids (Avrahami et al., 2001; Avrahami
and Shai, 2002, 2004; Makovitzki et al., 2006; Makovitzki and Shai, 2005;
Malina and Shai, 2005). The essential insight into the value of lipidization is that
hydrophobicity is relatively non-specific. That is, most of the sequence in AMPs
is devoted to making them hydrophobic enough to bind to membranes, as opposed
to lysing them after binding. Thus, one can dispense with most of the sequence if
the peptide is attached to an acyl chain; Shai and coworkers found that sequences
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as short as 4 amino acids had strong antimicrobial activity against fungi and bac-
teria, without significantly damaging human cells (Makovitzki et al., 2006).

Unsurprisingly, there has been a great deal of interest in modeling the binding
of AMPs to model lipid membranes (La Rocca et al., 1999). Indeed, membrane-
disrupting peptides such as gramicidin, alamethicin, and melittin have become
standard test cases in the development of implicit membrane models. In fact, much
of the interest in modeling isolated helices and helical aggregates in membranes
derives from the classic “barrel-stave” model, where amphipathic helical peptides
initially bind to the membrane interface, then cooperatively associate and fully
insert to form pores; this process has been explored via theoretical means (Frink
and Frischknecht, 2005a; Bohinc et al., 2003) and by explicit molecular dynamics
simulations (Tieleman et al., 1999b, 1999a).

However, there is significant evidence that many if not most AMPs do not op-
erate via the “barrel-stave” mechanism. Rather, the “carpet model” appears more
prevalent (Chan et al., 2006); in this view, peptides bind interfacially and stabilize
highly curved lipid structures, leading to the formation of toroidal pores (“worm-
holes”) and even micellization of the membrane.

This case is a difficult one to treat computationally. Poration due to lipid
binding occurs on too long a time scale for all-atom molecular dynamics; the
calculations which have been done have typically begun by preforming a partic-
ular pore-forming oligomeric structure (Tieleman et al., 1999b; La Rocca et al.,
1999). In principle, solute-focused implicit membrane models can reach the nec-
essary time- and length-scales for spontaneous oligomerization, and as described
above have had some successes in describing barrel-stave-type pore formation.
However, these models cannot represent the kinds of membrane disruption ex-
pected according to the carpet model, and so cannot be used to elucidate which if
either model applies to a given solute. The only example we are aware of where an
implicit membrane model was used to examine the mechanism of poration is the
work of Frink and Frischknecht, described above (Frink and Frischknecht, 2005a,
2005b), which applied density functional theory. In this model, however, protein
helices are represented as impermeable hard cylinders, neglecting other phenom-
ena such as electrostatics and amphipathicity. As such, these calculations, while
highly instructive, cannot be used to reveal the binding mode of. for example, a
particular amino acid sequence.

An implicit membrane model which could successfully attack this problem
would most likely need the following properties:

• Atomic- or near-atomic-level solute description.
• Accurate electrostatics, including both dielectric effects and effects due to

headgroup charge and dipoles.
• Membrane which responds to solute structure.

Several models from Section II.A have the first property, and could readily be
extended to have the second. However, none of the existing models can readily
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meet the third requirement, which should make this an interesting future research
problem.

B. Protein–Protein Association

Although biophysical experiments frequently focus on the behavior of iso-
lated proteins, biologically many if not most membrane proteins function as
part of complexes (Alberts et al., 1994). Of these complexes, homodimers are
most easily studied by biophysical techniques, since only a single protein needs
to be overexpressed. In particular, there is great interest in the dimerization
of G protein-coupled receptors (GPCRs) (Park et al., 2004), the largest super-
family of proteins in the human genome. These proteins are responsible for a
broad array of physiological processes involving signaling (Bockaert and Pin,
1999), and as a result are commonly targetted in drug development (Ma and
Zemmel, 2002). Among GPCRs, only one protein, rhodopsin, has been struc-
turally resolved at atomic resolution (Edwards et al., 2004; Li et al., 2004;
Okada et al., 2002, 2004; Palczewski et al., 2000; Schertler et al., 1993). In
recent years, significant controversy has erupted over the oligomeric state of
rhodopsin in its native membrane environment. Several groups have demon-
strated that rhodopsin dimerizes in non-native membranes (Kota et al., 2006;
Mansoor et al., 2006), and Palczewski and coworkers showed striking im-
ages from atomic force microscopy showing ordered rows of rhodopsin dimers
(Fotiadis et al., 2003a). However, others have argued that these dimers are arti-
facts of sample preparation conditions (Chabre et al., 2003; Fotiadis et al., 2003b),
and have argued that the functional form of the protein is most likely monomeric
(Chabre and le Maire, 2005).

In principle, one way resolve this controversy would be an unambiguous de-
termination of the dimeric structure of rhodopsin. However, this seems unlikely,
because any crystal structure could be countered by the argument that the dimer
was stabilized only by crystal packing. Instead, various groups have attempted to
map a generic GPCR dimer interface using mutagenesis studies (Javitch, 2004;
Guo et al., 2005; Fanelli and De Benedetti, 2005; Filizola et al., 2002; Filizola
and Weinstein, 2005b).

Ideally, this sort of strategy would be complemented by molecular-level simu-
lation, to flesh out the details and validate the interactions. Indeed, there have been
several efforts along these lines (see for example references (Filizola et al., 2006;
Filizola and Weinstein, 2005a)). However, such efforts are complicated by the
very long time scales necessary to sample large-scale rearrangement of protein–
protein interfaces; it is to be expected that even a totally incorrect protein–protein
docking would be stable on the 10–100 ns timescale readily accessible by all-
atom molecular dynamics. Using existing implicit membrane models is more
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appealing, since conventional molecular dynamics simulations could be aban-
doned in favor more efficient searching and sampling techniques. However, the
best of the existing solute-focused are expensive for larger systems; for exam-
ple, Feig’s work on bacteriorhodopsin trimers showed that the need for very
long electrostatics cutoffs greatly increased the computational cost (Tanizaki
and Feig, 2006). Moreover, these models are not capable of capturing the ef-
fects of specific lipid species. This could be critical to assessing the stability
of dimers, since we know that rhodopsin is both highly sensitive to and ca-
pable of perturbing its lipid environment (Brown, 1994; Botelho et al., 2006;
Polozova and Litman, 2000). As such, we once again reach a point where new
models will be needed in order to resolve the problem.

IV. CONCLUSION

Lipid membranes are critically important biologically, both as passive barriers
and as active participants in membrane protein function. Molecular modeling has
already made significant contributions to our understanding of their roles, and can
be expected to be even more valuable as structures of more membrane proteins
become available. However, for many applications, explicit all-atom calculations
are prohibitively expensive, and will remain so for the foreseeable future. In this
context, the development of new models for representing protein–lipid interac-
tions implicitly becomes extremely important. A great deal of impressive work
has been done, but still more remains.
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