
Please cite this article in press as: Poruthoor et al., Understanding the free-energy landscape of phase separation in lipid bilayers using molecular dynamics,
Article

Biophysical Journal (2023), https://doi.org/10.1016/j.bpj.2023.09.012
Understanding the free-energy landscape of phase
separation in lipid bilayers using molecular
dynamics
Ashlin J. Poruthoor,1 Akshara Sharma,1 and Alan Grossfield1,*
1Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York
ABSTRACT Liquid-liquid phase separation inside the cell often results in biological condensates that can critically affect cell ho-
meostasis. Such phase separation events occur in multiple parts of cells, including the cell membranes, where the ‘‘lipid raft’’ hy-
pothesis posits the formation of ordered domains floating in a sea of disordered lipids. The resulting lipid domains often have
functional roles. However, the thermodynamics of lipid phase separation and their resulting mechanistic effects on cell function
and dysfunction are poorly understood. Understanding such complex phenomena in cell membranes, with their diverse lipid com-
positions, is exceptionally difficult. For these reasons, simple model systems that can recapitulate similar behavior are widely used
to study this phenomenon. Despite these simplifications, the timescale and length scales of domain formation pose a challenge for
molecular dynamics (MD) simulations. Thus, most MD studies focus on spontaneous lipid phase separation—essentially
measuring the sign (but not the amplitude) of the free-energy change upon separation—rather than directly interrogating the ther-
modynamics. Here, we propose a proof-of-concept pipeline that can directlymeasure this free energy by combining coarse-grained
MDwith enhanced sampling protocols using a novel collective variable. This approach will be a useful tool to help connect the ther-
modynamics of phase separation with the mechanistic insights already available from MD simulations.
SIGNIFICANCE Standard molecular dynamics simulations can determine the sign of the free-energy change upon
phase separation but not the amplitude. We present a new method to determine the phase separation free energy for lipid
membranes, based on an enhanced sampling using the weighted ensemble method combined with a novel collective
variable, validated using coarse-grained simulations applied to several simple systems. The new method will be valuable
as a way to develop models that connect molecular-level structural features to the thermodynamics of phase separation.
INTRODUCTION

Interactions among biomolecules often result in phase
separation and subsequent formation of biological con-
densates (1). In the past decade, there has been a new
appreciation for the role of phase separation in cell phys-
iology (2). Biological condensates involving fundamental
biomolecules such as DNA (3), RNA (4), protein (5), and
lipids (6) have been identified and their functional roles at
least somewhat understood. Biological condensates are
involved in diverse processes, including DNA damage
response (7), translational (8) and transcriptional (9) regu-
lation, ribosome biogenesis (10), cell adhesion (11), and
endocytosis (12). Such nano- to micrometer-scale com-
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partments have no surrounding membrane but sequester
key molecules and help in cellular organization, similar
to canonical organelles (13,14). These transient and dy-
namic sequestration zones are crucial for cell stress
responses (14) and signal transductions (15). As phase-
separated molecules are concentrated within these con-
densates, they can function as reaction crucibles that
enhance reaction kinetics (16). However, abnormal phase
behavior of biological condensates is speculated to under-
lie multiple disease states, including neurodegenerative
diseases such as Huntington’s (17), amyotrophic lateral
sclerosis (18), and Parkinson’s (19).

Like these intracellular biological condensates, phase
separation in the cell membrane often results in relatively
ordered lipid lateral domains with collective behavior that
can recruit other proteins and lipids (6,20). Such domains
often cluster signaling molecules (21) and facilitate
conformational modulations through domain-specific lipid
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interactions (22,23) that are relevant in immune signaling
(24,25) and host-pathogen interactions (26). As membrane
properties modulate resident protein function, the coexis-
tence of distinct phases gives the cell an extra tool for
regulation. Conformational changes in domain-resident
molecules and their subsequent activity shifts regulate
key signaling events (22,23). It has also been observed
that the HIV Gag protein is sensitive to domains with
high cholesterol content, suggesting a potential role of
membrane domains in host-pathogen interaction and viral
assembly (26). Moreover, lipid domains are conserved
throughout the Tree of Life, implying their relevance in
regulating cellular processes (6); for example, recent
work from the Keller lab showed that yeasts actively regu-
late the composition of their vacuolar membranes to keep
the melting temperature well above the growth tempera-
ture of the yeast (27). For these reasons, understanding
the thermodynamics of lipid phase separation as a func-
tion of the composition of the system is a critical step to-
ward understanding the individual lipid properties that
underlie the formation of domains and the resultant func-
tional modulations.

Lipid domains have been studied extensively both experi-
mentally and computationally. However, teasing out the com-
plex interactions between domain components that determine
the membrane organization is challenging in vivo due to the
limitations of different methodologies (28). Such difficulties
primarily arise due to 1) the complex composition of cell
membrane (29), 2) difficulties in defining domain properties
in vivo (6), and 3) challenges in achieving specificity when
perturbing the system with probes (30). Hence, simple model
membranes have been extensively used to mimic the phase
separation of complex cell membrane in vitro (31–33) and
in silico (34–36). Such studies provide powerful insights
into phase-separated domains, their properties, and whether
the process is favorable, but, as a rule, atomistic and
coarse-grained models cannot quantify the underlying ther-
modynamics, although simpler lattice-based models can
(37–45). This limits our ability to assess the contributions
of different mechanistic effects to the process.

As a ‘‘computational microscope’’ (46), molecular dy-
namics (MD) simulations have been used to study sponta-
neous lipid separation without using exogenous labels or
probes (47). However, MD simulations designed for sponta-
neous phase separation are inadequate to compute thermo-
dynamic properties with statistical confidence. This is
because the transition between mixed and separated states
is often a single irreversible event on the microsecond time-
scale typically achievable by typical all-atom or even
coarse-grained MD (34, 48), especially given the relatively
large size required to model the phenomenon. That said,
coarse-grained (CG) MD is an excellent tool to study phase
separation in the membrane, because it retains molecular-
level resolution while capturing nanoscale domains due to
transient phase separation events.
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Previously, the Tieleman (48) and the Gorfe (36) groups
have done some pioneering work on the thermodynamics of
lipid domains. Although the former used thermodynamic inte-
gration (49) to calculate the free energy and excess chemical
potential for exchanging lipid species between phases, the
latter used umbrella sampling (50) to compute the membrane
partition thermodynamics of an idealized transmembrane
domain by dragging it across the boundary between distinct
lipid phases.

We hypothesize that coupling a more versatile enhanced
sampling method with the standard CG MD will improve
the transition events between the mixed and separated states
of the lipid bilayer system under study to compute the free
energy for phase separation. Various enhanced sampling
protocols have previously demonstrated their ability to
enhance the sampling of rare events (51). In most cases,
external forces are applied to the system to bias simulation
to explore the desired phase space. As a result, it is neces-
sary to compute the derivative of the collective variable at
each time step. Certain popular implementations of such
protocols, such as COLVARS (52) and PLUMED (53), are
done on single central processing units serially, leading to
poor performance when the collective variable is computa-
tionally complex, as is the case for the complicated collec-
tive variables proposed to study phase separation.

By contrast, the weighted ensemble (WE) (54,55) method
has the advantages of 1) unbiased dynamics, and 2) good sam-
pling, achievedbyenhancing the samplingofotherwise under-
sampled phase space and reducing the sampling of otherwise
oversampled phase space.Moreover, there is an added benefit,
in that the calculation of the collective variable can be de-
coupled from the MD, which simplifies its implementation
and can improve the computational performance. It should
be noted that the WE method is highly parallelizable and
can take advantage of GPU acceleration(56).

Here we present a novel proof-of-concept pipeline to esti-
mate the equilibrium free-energy change upon separating a
lipid bilayer into distinct coexisting phases. We test this pipe-
line on three different lipid bilayer systems with varying de-
grees of phase separation propensity. We explore three
potential candidate collective variables and assess their effec-
tiveness in the pipeline. We then construct free-energy land-
scapes of the three systems at multiple temperatures. We
further explore a few nontraditional use cases for the data
thus generated and discuss additional room for improvements.
MATERIALS AND METHODS

System details

As shown in Fig. 1, we used three different ternary lipid bilayer

systems: 1) a lipid bilayer consisting of dipalmitoyl-phosphatidylcho-

line (DPPC), dilinoleyl-phosphatidylcholine (DIPC), and cholesterol

(CHOL), known to phase separate in silico in a few microseconds

(15,34,59–63); 2) a lipid bilayer consisting of DPPC, diarachidonoyl-

phosphatidylcholine (DAPC), and CHOL, known to phase separate
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FIGURE 1 (A) 2Dstructure andcorrespondingMartini 2bead structure for lipidsused in this study (visualizationusingChemDrawandVMD(57,58) respectively).

(B) Time evolution of each lipid system. The membrane normal is pointing toward the reader. To see this figure in color, go online.
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in silico within a few hundred nanoseconds (35,36,64); 3) a lipid bilayer

consisting of DPPC, palmitoyl-oleoyl-phosphatidylcholine (POPC), and

CHOL that was previously shown not to phase separate (33,64). The

composition of the DPPC-DIPC-CHOL, DPPC-DAPC-CHOL, and

DPPC-POPC-CHOL systems used here are (0.42/0.28/0.3), (0.5/0.3/

0.2), and (0.4/0.4/0.2), respectively, and are adapted from previous

studies (34,35,64). We kept the total number of lipids the same as in

previous calculations as well, with the DPPC-DIPC-CHOL, DPPC-

DAPC-CHOL, and DPPC-POPC-CHOL systems containing 1944,

1200, and 1200 respectively.
Due to the relatively large system sizes and the timescale required for

phase separation and related dynamics in lipid bilayer simulations, we

used a CG model for each system. Although nothing in the subsequent sam-

pling or analysis is specific to the CG models, it makes sense to use a less-

expensive model while working out the method.

Using CHARMM-GUI Martini Maker (65), we constructed four rep-

licas of each CG ternary symmetric bilayer system, with the lipids

randomly mixed in the bilayer. We used Martini 2 force field parameters

and particle definitions (66,67) to construct CG systems and to run the

subsequent MD simulation. We replaced the default input files from
Biophysical Journal 122, 1–16, November 7, 2023 3
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CHARMM-GUI Martini Maker with their respective most recent Mar-

tini 2.x versions if they existed. We used the Martini polarizable water

model (68) to solvate all systems with approximately a 1:30 lipid to real

water ratio. A detailed description of the systems is given in Table S1 of

supporting material. We did not use the more recent Martini 3.0 lipid

parameters, since there are no published Martini 3 parameters for

cholesterol at this time.
Standard MD simulation details

We used GROMACS 2020.3 (69) to propagate the dynamics of the sys-

tems prepared. Each system was minimized and equilibrated following

the protocol suggested by CHARMM-GUI Martini Maker. To obtain an

intact bilayer without any membrane undulations, we used the flat-

bottomed restraint potential available in GROMACS; this allowed the

lipids to move freely in the plane of the membrane but restrained within

a slab of defined z thickness along the membrane normal. More details

about membrane restraining protocol are given in the supporting material

(Section S2).

After the minimization and equilibration, all systems were run at 400

K in the NPT ensemble for 100 ns to make sure the lipids in each system

were randomly distributed. For every system, we forked each replica

into multiple temperature runs simulated at different temperatures

ranging from 298K to 450K. For these production runs, the temperature

coupling is done using velocity rescaling (70) with a time constant 1 ps.

An extended-ensemble Parrinello-Rahman pressure coupling (71) with a

relatively high time constant of 12 ps was used, as recommended for

Martini. A semi-isotropic pressure coupling suited for membrane simu-

lations is used here with a compressibility of 3 �10� 4 bar� 1 and refer-

ence pressure for coupling as 1 bar. Reaction field electrostatics with a

coulomb cutoff of 1.1 nm and a dielectric constant of 2.5 was used, as

required with the Martini polarizable water model. For van der Waals

interaction, a similar cutoff of 1.1 nm was used. A potential-shift van

der Waals modifier was also used. For neighbor searching, a Verlet cut-

off scheme was used with neighbor list updated every 20 steps. The

simulation parameters were mostly inspired by previous CG Martini

simulations (72). To eliminate potential artifacts previously reported

due to inaccurate constraints (73), we used an eighth-order expansion

for the LINCSolver constraint coupling matrix (74) for more accuracy.

Moreover, for better energy conservation, we also used short 20-fs time-

steps, which is conservative for a CG system.

All standard MD simulations ran for at least 8 ms using the BlueHive

supercomputing cluster of the Center for Integrated Research and

Computing at the University of Rochester. Simulations ran on Intel

Xeon E5-2695 and Gold 6130 processors augmented with Tesla

K20Xm, K80, and V100 GPUs. The trajectories were processed

and analyzed using the LOOS software package (75). A detailed descrip-

tion of the simulation parameters is given in Table S1 of supporting

material.
Collective variables

A collective variable is a reduced coordinate that captures the progress of a

system along the transition of interest. Ideally, such a reduced variable(s)

should fully capture the keymodes of the system to reflect the complex event

under study. The success and efficiency of any enhanced sampling protocol

depend on the chosen collective variable over which the sampling is

enhanced (51,76,77). We explored three candidate collective variables for

the WE simulations.

Fraction of lipids in clusters

Since the formation of lipid domains with distinct properties from the rest

of the bilayer is a characteristic feature of a phase-separating lipid bilayer,

we hypothesized that we could use a variable that quantifies the recruit-
4 Biophysical Journal 122, 1–16, November 7, 2023
ment of lipids into such domains to track the phase separation events in

our systems. Here, we define the fraction of lipids in clusters (FLC) as

follows:

FLC ¼
XN
i

No: of Xi lipids in lipid Xi Clusters

No: of Lipid Xi

¼
PN

i No: of Lipid Xi in Lipid Xi Clusters

Total No: of Lipids
(1)

where subscript i denotes the individual lipid species in a bilayer consisting

of N total lipid species. As shown in Fig. 2, each system under study has
N ¼ 3 lipid species. FLC increases as the system goes from a well-mixed

state, with a random distribution of lipids, to a separated state. An FLC of

0 corresponds to a system configuration where no lipids are part of any clus-

ter, whereas an FLC of 1 implies that all lipids are in a cluster (although not

necessarily a single cluster).

The clustering is defined using the density-based spatial clustering of

applications with noise (DBSCAN) algorithm (78,79) as implemented in

scikit-learn (80). For lipid DBSCAN clustering, we supply a two-dimen-

sional lipid-lipid distance matrix that accounts for periodic boundary

conditions; the distance calculation was performed using LOOS, with

the two leaflets treated independently. The DBSCAN algorithm requires

two additional input parameters: min samples and ε. We consider lipids

with more than min samples neighbors (including the lipid itself) within

ε radius as core lipids. Noncore lipids still within ε radius of a core lipid

are considered border lipids. A set of core lipids within ε radius of each

other and their border lipids forms a cluster. All lipids that are not a part

of any cluster are considered outliers.

Since lipid motion in a bilayer is constrained primarily on a plane and

Martini beads for a lipid are of similar radii, we used the two-dimen-

sional version of Kepler’s conjecture that the densest packing of unit

disks in a plane is hexagonal close packing (Thue’s theorem), and chose

seven (six nearest neighbors plus one central lipid) as min samples for

all the lipid species. However, ε was chosen differently for each lipid

species based on their first nearest-neighbor distance from the central

lipid. We used the xy rdf tool in LOOS to calculate an individual lipid

species’ first nearest-neighbor distance. From the first 8-ms MD standard

simulation of each replica, we computed the radial distribution function

(RDF) for a lipid species in the xy-plane. From the RDF plot, we found

the first maxima (provided it is above 1), and the distance to the minima

right after this first maximum was determined to be the first nearest-

neighbor distance for that lipid species. This distance was averaged

over all four replicas for a given system at a given temperature and

then assigned as the respective ε input. Since nearest-neighbor distance

is a function of temperature, for the same lipid species in the same sys-

tem, ε may be different for different temperatures. The computed ε

values, i.e., average first nearest-neighbor distance for different condi-

tions, are plotted in Fig. S1. Additionally, we tracked auxiliary variables

that evaluate the quality of DBSCAN clustering since it is critical for

defining the FLC that drives the WE equilibrium dynamics (Section

S4; Figs. S2–S5).

Cumulative enrichment index

When lipids segregate into phases, one result is that the local concentra-

tion of a given lipid type in the vicinity of other lipids of the same type

is increased. We attempted to exploit this phenomenon by tracking the

degree of local lipid enrichment; this was inspired by previous work

from our lab (81), although other groups used similar methods

(82,83). Here, we calculated the average local density of Xi lipids

around a single lipid Xij, within a cutoff radius, ei, defined as above

for FLC estimation. We defined a normalization factor, Fi, as the local

density of Xi lipids for a uniformly well-mixed system of similar

composition. The ratio of former respective to latter forms the enrich-

ment index for a lipid species, Xi. Cumulative enrichment index (CEI)
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is defined as the sum of individual enrichment index for all the lipid spe-

cies in the system, as follows:
CEI ¼
XN
i

�
Average local density of lipids Xi around a single lipid Xi

Local density of lipid Xi for a well mixed system

�
eiðTÞ

¼
XN
i

1

Fi

1

pe2i

X
j

No: of Xi lipids around Xij lipid in eiðTÞ radius
(2)
whereXij denotes j
th lipid ofXi lipid species. The local density aroundXij is

calculated within eiðTÞ distance, where T is the temperature of the system,

corrected for the contribution of the central lipid. For the normalization

factor, Fi, we calculated the global density of Xi lipids by taking the ratio

of the total number of Xi lipids in the system to the xy-planar area of the

bilayer system. This global density is the same as the local density of Xi

lipid for a uniformly well-mixed system. Thus CEI significantly larger

than 3 implies that the ternary system,N ¼ 3, deviates from awell-mixed

state to a separated state.

Segregation index

We defined a contact-based quantity, segregation index (SI), to track

the homogeneity of the lipid bilayer, similar to the ones that track

the mixing of beads used previously (84,85). Here, we computed the to-

tal contacts between a given lipid and its environment and computed the

fraction of those contacts to like-species lipids:

SI ¼
XN
i

"
XiXiPN
j XiXj

#
eiðTÞ

¼ X11

X11 þ X12 þ X13

þ X22

X21 þ X22 þ X23

þ X33

X31 þ X32 þ X33

(3)

XiXj denotes the contacts between lipid species Xi and Xj within eiðTÞ cut-
off. Thus, for a ternary bilayer system, SI ¼ 3 implies a fully separated sys-
tem, and SI < 3 implies mixing. However, for the analysis, we ignored the

contribution of cholesterol as we found that excluding the cholesterol term

did not change the functional behavior (Fig. S6). Hence, SInoCHOL effec-

tively will have bounds [0, 2] unless otherwise stated.
Optimized version of FLC

We used a hidden Markov model (HMM) (86) refinement scheme to

optimize the parameters for FLC to improve its ability to discriminate

between states. First, we calculated FLC for various combinations of

min samples and e for the conventional MD simulations. We scanned

min samples (the number of lipids needed to form a cluster) from 5 to

60 in steps of 1 and ε from 1 nm to rdiagonal in an increment of

0.05 nm, where rdiagonal is half of the periodic box diagonal distance

in the plane of the membrane. We calculated the FLC value for each

parameter combination on the trajectories collected from standard MD

simulation for each system at different temperatures. On the FLC evolu-

tion data corresponding to each trajectory, we fit an HMM model using

the hmmlearn Python module (86). However, one needs to specify the

number of hidden states in the data to fit the data. Even though we could

make a simple assumption of two states, mixed and demixed, and go

ahead with fitting, it might not fully capture the behavior of the trajec-
tory under consideration as there can be hidden meta-stable states crit-

ical to the phenomenon we are studying. Therefore, we used a brute-
force approach to fitting the HMM model with N states, where N ¼
1–5. We checked how the model converged for each value of N by

running fitting from 10 random starting states, and chose the N that

converged best as the optimum number of states for fitting. Once we

choose the best number of states, HMM fitting is done on the full trajec-

tory data, yielding a hidden state sequence for each corresponding trajec-

tory. We used the difference in FLC values between extreme hidden

states as a measure of the HMM’s ability to discriminate. Thus, we

made a dataset corresponding to different values of min samples and

e, and their corresponding best number of HMM states and FLC state

difference. We repeated the scheme for all four replicas of each system

at different temperatures.

To arrive at an optimized FLC parameter set, we filtered this larger data-

set using the following steps: 1) for a given lipid system, select only those

pairs with FLC state differences greater than 0.5 (half of the possible range

of FLC). This cutoff choice is arbitrary and just enough to identify param-

eter pairs that distinguish states clearly from each other. 2) From the

selected parameter sets, check for the occurrence of a specific pair of

ðmin samples; eÞ across the datasets corresponding to all the temperature

replicas. Rank the pairs based on most occurrences. This helps to identify

parameter pairs that are valid across most temperatures. 3) Choose the

pair that gives maximum state difference with most occurrences. In case

of a tie for the optimum parameter pairs, we chose the pair that has the least

ε and min samples to reduce the neighbor search overhead. Now, instead

of a temperature-specific min samples and ε for each species in a given

ternary mixture, we have a unique pair for each lipid species in a system.

We refer to the coordinate using these parameters as FLCopt. For the

DIPC system, the optimized values (min samples, e) are (26.5 Å, 24),

(31.5 Å, 26), and (32.5 Å, 23) for DPPC, DIPC, and cholesterol, respec-

tively. For the DAPC system, they are (33.0 Å, 42), (44.5 Å, 56), and

(50.0 Å, 41) for DPPC, DAPC, and cholesterol. FLCopt was not used for

WE sampling, only as a coordinate on which to project the free energy.
WE simulation

Introduction to WE simulations

Although theWE method has been reviewed extensively elsewhere (56,55),

we provide a brief overview here. The essence of WE is to generate a large

number of short, unbiased trajectories, such that they evenly cover confor-

mation space as quantified by a chosen collective variable or progress coor-

dinate. Specifically, a coordinate is chosen and broken into bins. Short MD

trajectories (called walkers) are run and the location of the final state iden-

tified. If a given bin has more than a chosen target number of walkers, some

of those walkers are culled and their statistical weight is distributed among

the remaining walkers in the bin. If there are fewer than the target number of

walkers in a bin (e.g., because more walkers departed than arrived, or

because a walker moved into a previously unpopulated bin), the walker is

split to produce the target number and its statistical weight evenly distrib-

uted among the new walkers.
Biophysical Journal 122, 1–16, November 7, 2023 5



FIGURE 2 Illustration of collective variables. (A) Functional form of FLC and expected evolution curve for a phase-separating system. (B) Illustration of

CEI. (C) Illustration of SI. To see this figure in color, go online.
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The WE approach has several major advantages. First, it can be proved

that WE converges to the correct free-energy distribution in the good-sam-

pling limit (55). Second, its use of a large number of short trajectories is

readily parallelizable, making it efficient on high-performance computing

resources. Third, it directly produces unbiased estimates of the kinetics

that are independent of the chosen coordinate (although some coordinates

may converge faster). Fourth, unlike almost every other enhanced sampling

method, the MD itself is unbiased; the collective variable is computed only

after the MD has finished. This last property was most important to the pre-

sent application; the coordinates we used are computationally expensive,

particularly if a plugin such as PLUMED (87) or COLVARS (52) was

used, since both are restricted to a single central processing unit core and

are not GPU accelerated.

Preparing seeding configurations for WE simulation

From each 8-ms MD simulation of a given composition, the last 10 frames

spaced by 100 ns were collected. These structures contained mixed and un-

mixed states,whichweused as starting structures tobegin theWEsimulations;

starting the WE with structures scattered across the collective variable range

reduces the time needed to generate well-equilibrated free-energy curves.

For the DPPC-DAPC-CHOL and DPPC-DIPC-CHOL systems, the set of

mixed configurations for a particular replica came from the respective 423 K

and 450 K simulation frames, since both systems are only well mixed at high

temperatures. The set of separated configurations for a replica comes respec-

tively from the 298 K and 323 K simulations. For the DPPC-POPC-CHOL

system, starting structures were taken from the 298 K and 450 K trajectories;

although the system never phase separates, using these two temperatures

gives structures that span the whole range of the collective variables.

Running WE simulations

We ran WE equilibrium simulations using version 1.0 of the WESTPA pack-

age (56), closely following the previously established protocol (88). The col-

lective variable was divided into 30 dynamic bins using the minimal adaptive

binning scheme (89). For each replica, a target number of four short simula-
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tions, or ‘‘walkers,’’ per bin were started in parallel from the mixed and the

separated configurations prepared earlier. After every resampling interval

of 1 ns, the collective variable was evaluated to initiate the merging and split-

ting of walkers to maintain the target number of walkers per bin. One cycle of

MD and resampling is referred to as a single WE iteration. We conducted 500

WE iterations for each replica. We used GROMACS 2020.3 to propagate the

dynamics, using the same parameters described earlier for the standard MD

simulations. TheWE equilibrium dynamics reweighting protocol (90,91), im-

plemented in WESTPA 1.0, was used to accelerate the convergence of WE

walkers toward equilibrium. The reweighting is done every 10WE iterations.

Four independent WE replicas, started with a different subset of initial struc-

tures, were simulated for each temperature and lipid composition. All WE

simulations were run using the Intel Xeon E5-2695 and Tesla K20Xm

GPUs in the BlueHive supercomputing cluster of the Center for Integrated

Research and Computing at the University of Rochester.

Analysis of WE simulations

The probability distributions for the collective variables for each replica, as

a function of WE iterations, were constructed using w pdist and plothist

tools in WESTPA. Using this distribution, we monitored the evolution of

each WE replica simulation and the convergence. We used the

w multi west tool in WESTPA to combine data from four of the WE rep-

licas of a system at a given temperature. We then constructed the respective

free-energy surface from the combined probability distribution of a system.

Unless otherwise noted, equilibrium curves were always calculated using

the last 10 iterations of each WE run, because combining results pre and

post reweighting is not statistically correct. To check the populations in

different states and the determine flux between states, the w ipa tool was

used. When performing this calculation for the DPPC-DIPC-CHOL system

at 323 K, we defined the states based on visual inspection of the correspond-

ing free-energy curves. We defined the mixed and separated states as CEI¼
[0.0, 3.9] and [4.4, 6.0], SInoCHOL ¼ [0.0, 1.3] and [1.4, 2.0], and FLC ¼
[0.0, 0.575] and [0.65, 1.0], respectively. The choice is arbitrary but reason-

able enough to give us a picture of what is happening.
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Input files, initial structures, and scripts required to run and analyze all sim-

ulations are available on GitHub at https://github.com/Poruthoor/Phase_

Separation_Article/tree/main/FLOPSS.
RESULTS

Consistent with previous studies from which they are adapt-
ed, the standard CG-MD simulations of DPPC-(DA/DI)PC-
CHOL systems phase separates into Lo and Ld regions. The
Lo region is enriched in the saturated lipid, DPPC, and
cholesterol, whereas the Ld region contained mostly the un-
saturated lipids, DAPC or DIPC, depending on the system.
As expected, the DPPC-POPC-CHOL system did not form
distinct phases based on visual inspection. This section com-
pares how different variables track phase separation propen-
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go online.
sity in lipid bilayers using standard CG-MD simulations. We
then compare the convergence of WE simulation to the
choice of collective variable. Finally, we present the free-en-
ergy landscapes of lipid bilayer systems obtained using WE
simulations and discuss reusing the data generated to form
other intuitions and applications.

To evaluate how the collective variables track phase sep-
aration, we traced the time evolution of each variable for
each system using standard MD starting from well-mixed
bilayers. Fig. 3 illustrates the temporal evolution of FLC,
CEI, and SInoCHOL for all systems at 298 K, 323 K, 423 K,
and 450 K. For the two phase-separating systems, the vari-
ables capture a single transition between a mixed state and a
separated state. Interestingly, for the relatively slow-sepa-
rating DPPC-DIPC-CHOL system, CEI and SInoCHOL
ime Time

IPC-CHOL DPPC-POPC-CHOL

4 6 8

T = 423 T = 450

4 6 8

4 6 8
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e separation. Each line represents one conventional MD simulation

a single lipid composition, whereas each row shows a different

represent different simulation temperatures. To see this figure in color,
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appear to indicate a slower transition than FLC, indicating
that, although these variables are correlated, they do not
measure precisely the same phenomenon. For the DPPC-
POPC-CHOL system, the variables capture a single state
corresponding to a mixed system and no transition. Never-
theless, it is worth noting that FLC, CEI, and SInoCHOL cap-
ture the effect of temperature in all systems, including for
POPC, the negative control, which does not phase separate.

These variables even capture the subtle differences in
phase-separating propensity between systems. For example,
at 298 K, the plateaued region of the FLC, CEI, and
SInoCHOL curves are higher for the DPPC-DAPC-CHOL sys-
tem than the DPPC-DIPC-CHOL system. This is expected
as 1) the lipid chain mismatch between saturated and unsat-
urated lipid species, and 2) the number of double bonds in
unsaturated lipid species is high in the DPPC-DAPC-
CHOL compared to DPPC-DIPC-CHOL system. Both these
factors have previously been shown to influence lipid phase
separation kinetics and domain stability (35,92). Thus we
have a set of low-dimensional variables that can 1) represent
the global dynamics of the lipid bilayer system, 2) distin-
guish and track the transition between mixed and separated
states, and 3) capture temperature effects, based on the
composition of the system.
Choice of collective variables for WE simulations

Since CEI, SInoCHOL, and FLC all track bilayer lipid sep-
aration similarly, we decided to test them as progress co-
ordinates to drive the WE simulation. Much to our
surprise, the three coordinates perform very differently.
Fig. 4 A shows free-energy curves computed for each co-
ordinate using the DPPC-DIPC-CHOL system at 323 K;
each curve on a given plot was computed from a different
block of 10 WE iterations for the same simulation. The
free-energy curves generated using CEI and SInoCHOL
are noisy and not self-consistent, indicating that, at best,
there is poor statistical convergence despite the relatively
lengthy 500-iteration WE runs. The SInoCHOL runs are still
more troubling, in that they suggest that the well-mixed
state is favored over the separated one, which contradicts
the results from the conventional MD simulations. By
contrast, the free-energy curves generated using FLC as
the collective variable are quite self-consistent, with the
phase-separated state slightly favored. Interestingly, if
we monitor the evolution of the free-energy curves as a
function of WE iterations, shown in Fig. 4 B, the simula-
tions appear to have converged in the sense that they are
no longer systematically changing.

These conflicting results raise the following question:
why do variables that make sense while tracking the system
in standard CG-MD simulation yield inconsistent or incor-
rect free-energy landscapes when used as collective vari-
ables in a WE simulation? One clue to diagnose the
problem lies in our starting states. In contrast to most WE
8 Biophysical Journal 122, 1–16, November 7, 2023
calculations, which begin the simulation with all walkers
in the ‘‘first’’ bin, we started with diverse states from across
the whole range of the collective variable. Although the
free-energy curves evolve as the WE proceeds, for the
poorly performing coordinates, the relative probability of
the two states remains almost entirely unchanged.

Fig. 4C confirms this hypothesis by tracking the probabil-
ity flux between the two states for each coordinate; the results
confirm that, when CEI or SInoCHOL are used as progress co-
ordinates, there is essentially no flux across the barrier sepa-
rating the separated andmixed states; the flux is literally 0 for
CEI, whereas SInoCHOL shows very small fluxes during the
last 100 iterations. By contrast, WE simulations using FLC
as the coordinate consistently show flux between the two
states that is at least several orders of magnitude larger.

Fig. 4 D shows this information another way, tracking the
relative population of the mixed and separated states over
the course of the WE runs; for clarity purposes, the states
are defined to exclude the ‘‘middle’’ of the coordinate (see
the ‘‘materials and methods’’ section for details), so the state
populations do not necessarily add to 1. It is interesting to
note that, for CEI, we see a significant drop in the population
of the mixed state during iterations 290–300, without a
concomitant rise in the other state. Since the state definition
we chose does not span the entire collective variable space
leaving room for the barrier that separates two states, this in-
dicates that some walkers transitioned out of the mixed state
but remained trapped in the middle of the collective variable
and never transitioned to separated state.

For reasons that are not entirely clear, one coordinate (FLC)
is far more efficient at sampling transitions than the other two.
CEI and SInoCHOL do not generate crossing events, and, as a
result, largely recapitulate the probability distribution used
to seed the calculation. The combined results from standard
CG-MD and WE simulations suggest that CEI and SInoCHOL
are suitable proxy labels for phase separation but perform
poorly as collective variables for sampling. For this reason,
we only continued testing the FLC-based WE calculations
for other systems and temperatures.

Fig. 5 shows the free-energy profiles of the DPPC-DAPC-
CHOL, DPPC-DIPC-CHOL, and DPPC-POPC-CHOL lipid
bilayer systems. Each curve is generated by averaging four
WE replica simulations, as described in the ‘‘materials and
methods’’ section, using the last 10 iterations (491–500) of
each replica. The variance between the individual replica
free-energy curves is generally quite small, approximately
0.5 kcal/mol, as shown in Fig. S7. The DPPC-DAPC-
CHOL system has a double-well behavior at 323 K and
353 K. However, both basins correspond to high FLC, such
that the lower FLC basin is still extremely nonideally mixed.
Based on visual inspection, it seems the primary difference is
the degree to which lipids have coalesced into domains.
Indeed, even at 423 K, we see that this system prefers to be
in configurations where more than 60% of lipids are in clus-
ters. For the DPPC-DIPC-CHOL system, the double-well
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free-energy curves gradually shift to the left (fewer lipids in
clusters) and change to narrower single-well curves as the
temperature increases. For the DPPC-POPC-CHOL system,
the free-energy curves at 298K and 423K have a single basin
and correspond to a low fraction of lipids preferring to be in
any clusters. In general, FLC-based free-energy landscapes
capture the role of lipid species constituting the bilayer sys-
tem in its phase separation. Moreover, the effect of tempera-
ture in decreasing the propensity of a lipid bilayer to separate
is evident in all systems. Although the expectation of clus-
tering-based FLC is to track the formation of domains in a
lipid bilayer, the fact that it also neatly captures the temper-
ature effects, even for the negative-control POPC system,
suggests the robustness of FLC as the collective variable.
Reconstructing free-energy landscapes on
alternative coordinates

OneoutcomeofWEsimulation is theensembleofdiverse struc-
tures generated by the trajectories. By construction,WE resam-
pling ensures that theweights associated with thesewalkers are
known and unbiased. Thus, we can reuse these weights to
examine other variables of choice post simulation without any
need to reweight; this is advantageous, because reweighting
nearly always introduces significant noise due to heavyweights
applied to the lowest DU structures. Assuming the initial
configurational distribution relaxed into an equilibrium distri-
bution during the WE simulations, we can reconstruct analo-
gous free-energy landscapes with collective variable
candidates that underperformed for sampling but are otherwise
more intuitive to understand. Fig. 6 shows reconstructed free-
energy landscapes using three coordinates, each constructed us-
ing the structures and weights from last 10 iterations of each
FLC-generated replica; Fig. 6 A shows the results for
SInoCHOL, Fig. 6B shows the results for CEI, and Fig. 6C shows
the results projected onto FLCopt. The results are qualitatively
similar on each coordinate, although, unsurprisingly, there are
quantitative differences. A few features are worth noting: first,
10 Biophysical Journal 122, 1–16, November 7, 2023
all three coordinates showmore distinct structure than the orig-
inal FLC-based free-energy curves. The DIPC system at low
temperature in particular produces free-energy curves with sig-
nificant fine structure, although it is unclear whether that struc-
ture is merely the result of statistical noise. Second, FLCopt

produces far more spread out curves than the original FLC,
which is consistent with the idea that FLCopt is a more sensitive
coordinate.With the exceptionof the systemsat 423K, all of the
free-energy curves have at least two well-defined wells.
Computing the free energy of phase separation

If we define a cutoff FLC value that separates the mixed and
phase-separated states, we can compute the free-energy
change for phase separation as

DDGsep ¼ � kBT ln
psep
pmixed

(4)

where the probabilities are extracted by summing the
weights from the WE simulations.
One challenge, however, is that the locations of the basins
shift with temperature, as seen in Fig. 5 A, and at higher tem-
peratures, the notion of two states—mixed and separated—
breaks down as the double-well behavior of free-energy curves
turns into a singlewell.One trivial solutionwouldbe to definea
rigid FLC cutoff for a system. However, a caveat for this
approach, as seen in Fig. 5 A, is that the free-energy basin
for a specific state of the DPPC-DIPC-CHOL system is
different for the respective state basin for the DPPC-DAPC-
CHOL system. For this reason, devising a rigorous systematic
way to define the separatorbetween the stateswill requiremore
investigation. As a first attempt, we use visual inspection to
define FLC cutoffs of 0.525 and 0.625 for the DPPC-DIPC-
CHOL andDPPC-DAPC-CHOL systems, respectively; below
those values, the systems are relatively well mixed. Fig. 7
shows the DDG curve for the DPPC-DAPC-CHOL and
DPPC-DIPC-CHOL systems as a function of temperature for
respective FLC cutoff. In principle, one can identify a melting



298 K 323 K 353 K 423 K

0

1

2

3

4

5

0.8 1.0 1.2 1.4 1.6 1.8 2.0 0.8 1.0 1.2 1.4 1.6 1.8 2.0

DPPC - DAPC - CHOL DPPC - DIPC - CHOL
ΔG

 (k
ca

l/m
ol

)

SI_noCHOLSI_noCHOL

A

DPPC - DAPC - CHOL DPPC - DIPC - CHOL

3.0
0

1

2

3

4

5

3.5 4.0 4.5 5.0 5.5 6.0 3.0 3.5 4.0 4.5 5.0 5.5 6.0

ΔG
 (k

ca
l/m

ol
)

CEI CEI

B

FLC_opt FLC_opt
0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

DPPC - DAPC - CHOL DPPC - DIPC - CHOL

ΔG
 (k

ca
l/m

ol
)

C

0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 6 Free energy curves projected onto

different collective variables. (A) Free-energy

landscapes reconstructed using the ensemble of

configurations generated during the last 10 itera-

tions of FLC-driven WE simulation. The free-en-

ergy landscape is reconstructed with respect to

SInoCHOL for DPPC-DAPC-CHOL and DPPC-

DIPC-CHOL systems, respectively. (B) The free-

energy landscape is reconstructed with respect to

CEI for DPPC-DAPC-CHOL and DPPC-DIPC-

CHOL systems, respectively. (C) The free-energy

landscape is reconstructed with respect to FLCopt

for DPPC-DAPC-CHOL and DPPC-DIPC-CHOL

systems, respectively. In all panels, the lines are

colored to represent different simulation tempera-

tures. To see this figure in color, go online.

Phase separation free energies

Please cite this article in press as: Poruthoor et al., Understanding the free-energy landscape of phase separation in lipid bilayers using molecular dynamics,
Biophysical Journal (2023), https://doi.org/10.1016/j.bpj.2023.09.012
temperature Tm as the temperature at which DDGsep ¼ 0;
however, the value derived in this manner is sensitive to the
choice of FLC cutoff, as shown in Fig. S8.

An arguably more satisfying approach is presented in
Fig. 8. Here, we take advantage of the presence of more
structure in the free energy as a function of FLCopt

compared to the original FLC. The presence of well-sepa-
rated basins in the free-energy curves lends itself to identi-
fying the local maxima as boundaries between states; with
this distinction drawn, we can compute the free-energy
difference using Eq. 4. This breaks down for the 423 K sys-
tems. Because these curves have only a single well, we are
forced to identify a cutoff value; the plotted values should be
considered a floor for the ‘‘true’’ value.
DISCUSSION

Relative effectiveness of collective variables for
sampling

It is well established that the choice of collective variable
is crucial for the success of enhanced sampling protocols
(51,76,77). However, determining in advance which coordi-
nates are best suited to efficient sampling is far from
Biophysical Journal 122, 1–16, November 7, 2023 11
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obvious. Several groups, most notably that of Tiwary (93–
96), have developed machine learning methods to identify
effective coordinates empirically based on their kinetic
properties. A more theoretical approach was developed by
Wu et al. (97), based on identifying the energy flow coupled
to motion along a coordinate. However, the former methods
do not explain the reason why a particular coordinate is
effective, whereas the latter is too computationally intensive
to apply to systems like those treated here; the presence of a
large number of equivalent molecules is a significant chal-
lenge to the formalism as currently presented.

Thus, we are left with less-satisfying intuitive explana-
tions for the wide variation in performance of the collective
variables tested here. It is reasonable to assume that the most
efficient coordinate for sampling is one that closely approx-
imates a true order parameter for the system and thus that
the efficacy of FLC as a sampling coordinate says some-
thing about local clustering as a mechanism of phase sepa-
ration. In particular, FLC is sensitive to somewhat longer-
length-scale motions than CEI or SI, both of which are
driven entirely by nearest-neighbor mixing. This is also
borne out by the improved ability of FLCopt to discriminate
between states; the optimized cutoff distances are roughly
two to three times longer. Based on this, we would predict
that FLCopt would perform as well or better than FLC,
although this will require more testing.
Interpreting DDGsep

It is tempting to think of DDGsep the way we do with simple
two-state double-well systems, where the relative popula-
tions of the two states change with temperature but the na-
12 Biophysical Journal 122, 1–16, November 7, 2023
ture of those states is unchanged. Consideration of Figs. 5
and 6 show that is clearly not the case here; regardless of
the collective variable used to project the free energy, the
location of the minimum or minima varies strongly with
temperature. This is even visible in the nonseparating
POPC system, where the free-energy curve shifts toward
lower FLC at higher temperatures (Fig. 5). This is not sur-
prising and has a direct physical interpretation: above the
Tm, there is a single phase, but the lipids do not mix ideally;
this is most visible in the DAPC system, where most DPPC
lipids are clustered even at 423 K. Even below the melting
temperature, the structure and composition of the phases
change with temperature.

As a result, the computed DDGsep values (Figs. 7 and 8)
are not nearly as large as one might expect. For example,
the separated state for the DIPC system at 298 K is about
�5 kcal/mol when estimated by choosing a conventional
FLC cutoff that looks reasonable. However, if we use
FLCopt and choose to split the states at the first free-energy
barrier from the right (high FLCopt), we get a much smaller
difference of �0.74 kcal/mol. The difference is that the
former approach attempts to compare the free energies of
a relatively well-mixed state to the separated one, whereas
the latter compares the two stable states of the system:
one phase-separated and the other a single phase with very
nonideal mixing. Since, at low temperature, good mixing
is very unfavorable, the latter approach produces a far
smaller DDGsep. That said, it is also possible that this rela-
tively moderate favorability is an artifact of the size of the
system simulated; in the future, it would be worthwhile to
investigate the dependence of DDGsep on system size in a
more systematic way.
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This explanation also rationalizes the most surprising
result, that the DIPC system has more favorable DDGsep

than the DAPC system at all temperatures except 423 K,
even though we would have thought of DAPC as being
the more strongly separating system. However, once we
consider the fact that the DAPC is far more nonideal
when existing as a single phase than the DIPC system, the
result makes more sense: the nonideality means that the
DAPC system is more able to sequester the DPPC lipids
without the entropic penalty of forming larger domains.
Put another way, the change in local composition surround-
ing a given DPPC is smaller upon phase separation for the
DAPC system than for DIPC. That said, it is also possible
that system-size dependence is playing a role here as well;
for example, if DAPC domains naturally existed on longer
length scales than DIPC, that would explain the results.
Free-energy landscape of phase-separating
systems pipeline for computing phase separation
thermodynamics

Here we propose a proof-of-concept pipeline to construct
free-energy landscape of phase-separating systems
(FLOPSS) by realizing multiple transition events using
WE strategy. Even though our systems of interest are lipid
bilayers, using appropriate model resolution and collective
variables can potentially generalize this pipeline to any
system that phase separates. The modular pipeline is out-
lined in Fig. 9, with different sublayers that constitute
each module.

The free-energy landscapes generated with FLOPSS are
consistent with behaviors from the literature, opening up
applications to other systems, including asymmetric bila-
yers, bilayers including peptides or proteins, or all-atom
models. We also plan to investigate the effects of finite-
sized systems on the phase separation thermodynamics
(98). One additional advantage of basing the method on
WE is that it can also be used to study the kinetics of
phase separation as well as the thermodynamics. One
other major area of research is determining whether other
collective variables might perform better and allow for
less-ambiguous procedures for determining DDGsep.
Finally, many of the details of the pipeline could be
further optimized, especially those associated with the
WE runs themselves.
CONCLUSIONS

In this work, we have proposed a simple yet efficient col-
lective variable that simultaneously tracks phase separa-
tion and drives WE simulation, ensuring sufficient state
crossing with reasonable convergence of configurational
distribution. We give yet another example of why collec-
tive variable choice is crucial for the success of enhanced
sampling protocols and that there can be considerable
gaps in performance between otherwise reasonable vari-
ables. Thus, a more thorough and systematic analysis of
the sensitivity of WE simulation on the choice of collec-
tive variable is needed but is unfortunately beyond the
scope of this work.

In summary, we have developed and validated a new
framework that can directly compute the thermodynamics
associated with lipid phase separation from simulation.
We have also demonstrated the potential reuse of a reason-
ably well-converged WE simulation driven by a good col-
lective variable to explore other variables, which otherwise
constitute a poor choice for driving WE simulation. Thus,
we can increase the effectiveness of WE simulation
without compromising on computational cost. Moreover,
we also showcase the potential of FLOPSS to construct a
DDG profile of the system under study to investigate the
melting properties. We want to highlight that, by general-
izing the collective variable FLC to track clustering in
3D space, FLOPSS can, in principle, be extended to other
instances of biological phase separation.
SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.
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