
LOOS: An Extensible Platform for the Structural Analysis of
Simulations

Tod D. Romo and Alan Grossfield

Abstract— We have developed LOOS (Lightweight Object-
Oriented Structure-analysis library) as an object-oriented li-
brary designed to facilitate the rapid development of tools
for the structural analysis of simulations. LOOS supports
the native file formats of most common simulation packages
including AMBER, CHARMM, CNS, Gromacs, NAMD, Tinker,
and X-PLOR. Encapsulation and polymorphism are used to
simultaneously provide a stable interface to the programmer
and make LOOS easily extensible. A rich atom selection
language based on the C expression syntax is included as part
of the library. LOOS enables students and casual programmer-
scientists to rapidly write their own analytical tools in a compact
and expressive manner resembling scripting. LOOS is written
in C++ and makes extensive use of the Standard Template
Library and Boost, and is freely available under the GNU
General Public License (version 3) (http://loos.sourceforge.net).
LOOS has been tested on Linux and MacOS X, but is written
to be portable and should work on most Unix-based platforms.

I. INTRODUCTION

A common problem facing simulations scientists is the
need to analyze their data. They are faced with deciding
whether to try to use a very capable but complex and difficult
to modify system such as CHARMM[1] or ptraj[2], or to try
to write their own tool. The latter choice then begets another:
which library to use to parse and organize the data, or, to
eschew code reuse and write a tool de novo. While there
are high quality libraries available for structural analysis,
such as SimTK[3], MMTSB[4], and MMTK[5], they are
generally part of a large project and are themselves complex
and not always easy to integrate. In the case of SimTK
and MMTK, these libraries are also geared more towards
creating simulations rather than providing interfaces for
rapid development of new analytical tools. Moreover, when
used with microsecond timescale simulations, the reliance
of interpreted languages such as Python and PERL can
become an impediment. These aspects of existing tools and
libraries impose a substantial activation energy barrier to the
construction of new tools and analytical methods, particularly
among students and scientists who do not view themselves
as programmers.

The design goals for the Lightweight Object-Oriented
Structure analysis library (LOOS) are specifically to make it
lightweight yet powerful, easily extensible, and easy to use
and difficult to use incorrectly. LOOS eliminates the complex
modeling hierarchies and concomitant class structures typical
of most libraries, instead focusing on atoms and groups of

T. Romo and A. Grossfield are with the Department of Biochemistry &
Biophysics, University of Rochester Medical School, Rochester, NY, 14642,
USA

atoms. Enabling the easy creation of small, focused tools and
eschewing the monolithic design of many extant packages
makes LOOS-derived tools simultaneously easier to learn
and easier to maintain. LOOS is designed primarily for
analysis, not for creating simulations, and as such supports
reading system and trajectory data from a number of different
formats.

Another common problem in building analytical tools is
communicating to the tool which atoms are of interest.
A variety of solutions are used by these libraries, though
most utilize a terse “short-cut” description of atom metadata
such as that used in CCP4[6] and MMTSB[4] or as used
in the make ndx tool in GROMACS[7]. MMTK instead
relies on the Python interpreter for selecting atoms, meaning
that the selection criteria must be hard-coded or additional
code must be written to interpret a user-specified selection.
Alternatively, CHARMM[1] and VMD[8] each provide a
very complex and expressive selection language, embedded
within the package. This tight integration makes it difficult
to access the selection language for adding functionality.
LOOS takes an approach similar to VMD in providing a
atom selection “expression” language, but LOOS does so
by specifying the language grammar and parser using the
common free Unix tools Flex and Bison. As a result, the
selection language is easy to extend and is exposed to the
tool-writer.

LOOS is made even more powerful through object ori-
ented program design and by using the C++ Standard Tem-
plate Library (STL) and components of the Boost Project (a
collection of libraries and header files that provide additional
functionality to C++). This design makes it easy, for exam-
ple, to write a tool that is “agnostic” with respect to what
specific file format is used to read in the data (e.g. a Protein
Data Bank file as opposed to a CHARMM/NAMD Protein
Structure File (PSF).

LOOS was designed from the outset to be as easy to
use as possible—to provide the simplicity of a scripting
language like Python but with C++ performance. Another
key to the design of LOOS is to hide from the end user
all of the complexity describe above—encapsulation of data
and bundling of high-level operations into member functions
within its classes hides much of this complexity from the
user.

II. IMPLEMENTATION

The following is a description of the implementation
details of the principal classes in LOOS. A number of
additional support classes are included that are useful in their

2332

31st Annual International Conference of the IEEE EMBS
Minneapolis, Minnesota, USA, September 2-6, 2009

978-1-4244-3296-7/09/$25.00 ©2009 IEEE

own right, including a full-feature coordinates class, a class
for performing geometric manipulations, as well as matrix
and memory management classes. While LOOS is designed
primarily for input of data, a specialized class for writing
basic CHARMM/NAMD DCD trajectories is included.

A. Atom and AtomicGroup

The Atom class is responsible for representing atoms
and their associated properties, such as coordinates and
charges, and metadata, such as names and residue names.
The available properties are based on those in the PDB atom
record (e.g. atom name, residue name, coordinates, charge,
mass, etc) along with a few other properties such as bond
connectivity.

The “workhorse” class in LOOS is the AtomicGroup.
This class manages a group of Atom objects and bundles
a number of useful functions together into a single names-
pace. This class also represents one of the major features
of LOOS—the elimination of the complex modeling and
class hierarchies typical of structural biology libraries. For
example, the classical hierarchy of atom, residue, chain,
and molecule may be appropriate for a protein in sol-
vent, but not for a membrane system. Instead of providing
specialized classes for each hierarchical component and
creating these objects during initialization, LOOS treats
these objects as just another AtomicGroup and provides
mechanisms for creating them as needed based on Atom’s
metadata. For example, the whole system is generally
created as a single AtomicGroup. If a program needs
to isolate a specific protein residue, the getResidue()
function can be used to take an atom and return a new
AtomicGroup with all of the atoms in the same residue.
The splitByMolecule() function walks the bond con-
nectivity tree and partitions the current group into groups
that are connected by bonds. This use of arbitrary groups
of atoms is similar to how GROMACS[7] works, however
LOOS AtomicGroup groups are dynamic (e.g. atoms can
be added or removed at run-time, such as pruning a user-
supplied list of atoms to only retain the heavy atoms).

Typically, the Atom objects stored in an AtomicGroup
are shared between related groups. Therefore, changes in one
group, e.g. coordinate transformations, are reflected in all
related groups. This means that copying AtomicGroup ob-
jects is fast and memory efficient. Additional metadata, such
as periodic box information, may also be shared amongst
related groups.

One of the most common and fundamental operations
that can be performed on an AtomicGroup is selecting
which atoms to extract for a calculation, such as picking all
protein alpha carbon atoms or all solvent oxygens. LOOS
provides several mechanisms that make this selection easy.
The selection criteria can be embedded in the code using
a library of special selection functions provided as part of
LOOS. Alternatively, the selection criteria can be specified
in a string supplied at run-time that is parsed according to the
LOOS selection expression grammar. A single function call

is all that is required to parse the expression and construct a
new AtomicGroup with the selected atoms.

The AtomicGroup class also serves as a mechanism
for grouping “convenience” functions for analysis that are
applicable to all groups of atoms. For example, these func-
tions include computing the center of mass, center of charge,
dipole moment, and radius of gyration. More code-intensive
techniques, such as principal axes and Kabsch superposi-
tion are also implemented in AtomicGroup; numerical
performance is dramatically improved by using fast linear
algebra libraries such as ATLAS (for Linux) and the vecLib
framework (bundled with MacOS X).

LOOS supports the native file formats for structures
from different packages by subclassing the AtomicGroup
class. Presently, LOOS supports the native file for-
mats for AMBER[2], CHARMM[1], CNS/X-PLOR[9], and
NAMD[10], and Tinker[11], while GROMACS[7] support is
planned for the near future. The subclasses are responsible
for parsing the file contents as well as handling any extra
metadata associated with the format. This polymorphic de-
sign means that, from the perspective of a LOOS tool, it does
not matter if the system is defined from a PDB, an AMBER
parmtop file, or a PSF since they are all AtomicGroup
objects, so long as enough information is present to com-
plete whatever calculations are intended (e.g. partial charge
information is needed to compute dipole moments).

B. Trajectories

The Trajectory class is both a template design pattern
and a class interface for interacting with simulation trajec-
tories. The Trajectory class uses a “template” design
pattern to standardize access to the trajectory frames wherein
the subclasses actually implement the steps that vary de-
pending on the trajectory format. This makes it very easy to
support new formats with very little additional code beyond
that required to parse a frame. Just as AtomicGroup can
be used for format-agnostic tools, any code that follows
the Trajectory interface will work with any specific
trajectory format.

The Trajectory class provides basic information about
a trajectory, such as number of frames present and time steps
used. Once a frame of data has been read, the new coordi-
nates can be mapped onto a corresponding AtomicGroup
using the updateGroupCoords() member function.
Since Atom objects are typically shared between related
AtomicGroup objects, using updateGroupCoords()
has the property that all related groups are also updated
at the same time. In addition, the Trajectory class and
subclasses understand about periodic box information and, if
it is present in the trajectory, will update the shared periodic
box data in related AtomicGroup objects.

C. Atom Selection Language

The atom selection language is a major component of
LOOS. When the subset of atoms to consider is only known
at run time, the tool must provide the user with a method
to arbitrarily change the selection criteria. As has been

2333

previously described, most libraries provide only a limited
support for this kind of user interaction. The LOOS selec-
tion language addresses this by providing a mechanism for
compiling a user-provided selection into a function that can
be used to select a subset of atoms from an AtomicGroup.

III. RESULTS AND DISCUSSION

The following sections will illustrate the code idioms
used to accomplish common tasks with LOOS. Additional
examples of common idioms and “best practices” can be
found by examining the tools bundled with LOOS.

A. Reading Structures

The first step in most tools is to read in a molecular struc-
ture. In LOOS, this is accomplished via “factory” functions
for reading in structures and trajectories. These functions
determine the type of the file by examining the file name
and then instantiate the appropriate object, returning the base
AtomicGroup. In this fashion, tools can easily be format-
agnostic, for example,

AtomicGroup system;
system = loos::createSystem(system_filename);

used in a tool will read in the given file and return the
AtomicGroup that corresponds to this system. The caveat
is that not all formats may include all of the required
information for a calculation (e.g. PSF files do not have
coordinates). Furthermore, trajectories can be read in a
similar fashion using factory functions.

B. Selecting Atoms

After reading in the structure and setting up the trajectory
interface, the next step in a tool is usually to pull out
the atoms that will be used in the analysis. This is not
a capability that is often addressed in structural analysis
libraries. For example, CHARMM has a very complex and
powerful selection facility, but it is only available within
CHARMM scripts and cannot be leveraged by a standalone
tool. In LOOS, a selection language with power comparable
to that of CHARMM or VMD is accessible to the tool writer
in only one line of code.

The selection language is really an expression language,
based on C expression syntax, that supports logical and
relational operations and keywords that are automatically
assigned properties from Atom’s. For example, the selection
name == "CA" matches any atom whose name is exactly
“CA”. Selections can also be combined with logical operators
and grouped with parenthesis, i.e. name == "CA" && (
resid >= 10 && resid <= 20) will select all Cα
atoms from residue 10 through residue 20 inclusive.

The selection language also supports regular expression
pattern matching for matching atom and residue names as
well as segid’s. While regular expressions provide a compact
and powerful method for matching complex patterns, their
use is not required in LOOS and much of what can be
expressed with regular expressions can be emulated with the
fundamental operators.

C. Commonly Used Idioms
LOOS was designed from the outset to support many

of the common analysis idioms in a more easy and con-
cise manner. For example, after selecting which atoms
to use, most tools will need to iterate over these atoms
performing some operation. The AtomicGroup class is
consistent with the Standard Template Library and can
therefore be used with idioms common to the STL, e.g.
AtomicGroup::const iterator. In addition, simpli-
fied iterator-idioms are provided that are often easier to use
by novice programmers.

Another common idiom is iterating over the
frames of a trajectory. This is facilitated by the
Trajectory::readFrame() function that acts as
an iterator while reading in sequential frames from the
trajectory. This leads to the following pattern:

traj->readFrame(skip_equil_frames);
while (traj->readFrame())

{
traj->updateGroupCoords(system);
perform_calculation(system);

}

In the example above, the first line primes the trajectory
iterator by skipping to the frame index before the one with
which to begin the calculation. The next line simply loops,
reading in the next frame of the trajectory and stopping
when the last frame has already been read. The next line
then updates the coordinates for all atoms in system (and
any related AtomicGroup objects) with the coordinates
extracted from the trajectory.

D. Bundled Applications
LOOS includes a number of applications that serve as

“best practices” examples for developing new tools with
LOOS, and are useful in their own right—most were written
to support our own research. One tool, aligner, aligns
the frames of a trajectory to the trajectory average, which is
computed iteratively[12]. Several different implementations
of tools for calculating radial distribution functions are
included. LOOS includes additional tools for calculating
average structures and the RMSD between a trajectory and
various targets. RMSD maps can show system flexibility
and the existence of conformational substates, and LOOS
provides a tool to calculate these[13]. Principal component
analysis (PCA) is supported via a singular value decom-
position (SVD) Tool. LOOS includes a set of tools for
calculating an elastic network model (ENM) for a system.
A tool for generating “porcupine plots” from both ENM
and PCA results is included. LOOS also implements a
number of tools aimed specifically at analyzing membrane
simulations, including programs to compute planar radial
distribution functions (xy rdf), deuterium order parameters,
and maps of electron density as well as charge and mass
distributions. LOOS also has tools for calculating distances
between arbitrary groups of atoms as well as basic rotameric
state. Finally, there is a tool for computing a ramachandran
plot for proteins as well as a ramachandran-like plot for
nucleic acids.

2334

Although manipulation of trajectories and models is not
a major goal of LOOS, some basic manipulation tools are
provided. Chief among these is subsetter, which can be
used to concatenate trajectories together while extracting an
arbitrary subset of frames or atoms. This tool can also be
used to recenter the trajectory and adjust or add periodic
box information.

CONCLUSIONS

Through designing and using LOOS, we have found that
the complex hierarchy of structures automatically imposed
by most structure analysis libraries are often unnecessary
for analysis. Dispensing with the hierarchy from the start
makes our library easier to understand and use. Compositing
AtomicGroup objects allows the user to easily emulate any
hierarchy that is desired. Through the careful design of the
LOOS library and the leveraging of object oriented design
ideas and the Boost and STL libraries, we have created a
library can be used almost like a higher level language.
This makes LOOS easy for students and casual programmer-
scientists to pick up and use. This also makes LOOS easy
to extend and maintain. While not designing specifically for
speed, we find that the performance of LOOS is, in general,
quite good. In addition, although the goal of LOOS is to
provide a framework for facilitating the creation of new tools,
LOOS includes many tools that are quite useful in their own
right. In the future, we intend to provide Python bindings to
make LOOS even easier to use while maintaining the core
performance via the C++ side of the interface.

ACKNOWLEDGEMENTS

We thank David Mathews and Julie Hwang for reviewing
the manuscript. We also thank David Mathews for input on
software design and AMBER support, as well as Matthew
Seetin, John Serafino, and Keith van Nostrand for providing
examples of AMBER files and for feedback on early versions
of the code. We also thank Nathan Baker and his lab for
providing samples of Gromacs files.

REFERENCES

[1] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States,
S. Swaminathan, and M. Karplus, “CHARMM: A program for
macromolecular energy, minimization, and dynamics calculations,” J
Comp Chem., vol. 4, pp. 187–217, 1983.

[2] D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M.
Merz, A. Onufriev, C. Simmerling, B. Wang, and R. J. Woods, “The
AMBER biomolecular simulation programs.” J Comput Chem,
vol. 26, no. 16, pp. 1668–1688, Dec 2005.

[3] M. A. Sherman, J. L. Middleton, J. P. Schmidt, D. S. Paik, S. S.
Blemker, A. W. Habib, F. C. Anderson, S. L. Delp, and R. B.
Altman, “The SimTK framework for physics-based simulation of
biological structures: preliminary design.” in Proceedings of the
Workshop on Component Models and Frameworks in High
Performance Computing, June 2005.

[4] M. Feig, J. Karanicolas, and C. L. Brooks III, “MMTSB tool set:
enhanced sampling and multiscale modeling methods for
applications in structural biology,” Journal of Molecular Graphics,
vol. 22, no. 22, pp. 377–395, 2004.

[5] K. Hinsen, “The molecular modeling toolkit: A new approach to
molecular simulations,” Journal of Computational Chemistry,
vol. 21, no. 2, pp. 79–85, 2000.

[6] C. C. Project, “The ccp4 suite: programs for protein
crystallography.” Acta Crystallogr D Biol Crystallogr, vol. 50, no. Pt
5, pp. 760–763, Sep 1994.

[7] H. J. C. Berendsen, D. van der Spoel, and R. van Drunen,
“Gromacs: A message-passing parallel molecular dynamics
implementation,” Comp Phys Comm, vol. 91, pp. 43–56, 1995.

[8] W. Humphrey, A. Dalke, and K. Schulten, “VMD – Visual
Molecular Dynamics,” Journal of Molecular Graphics, vol. 14, pp.
33–38, 1996.

[9] A. T. Brünger, Xplor-3.1, Yale University.
[10] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid,

E. Villa, C. Chipot, R. D. Skeel, L. Kal, and K. Schulten, “Scalable
molecular dynamics with NAMD.” J Comput Chem, vol. 26, no. 16,
pp. 1781–1802, Dec 2005. [Online]. Available:
http://dx.doi.org/10.1002/jcc.20289

[11] J. Ponder, “Tinker 4.2.” [Online]. Available:
http://dasher.wustl.edu/tinker

[12] A. Grossfield, S. Feller, and M. Pitman, “Convergence of molecular
dynamics simulations of membrane proteins,” Proteins, vol. 67,
no. 1, pp. 31–40, 2007.

[13] A. Garcia, “Large-amplitude nonlinear motions in proteins,” Physical
Review Letters, vol. 68, no. 17, pp. 2696–2699, 1992.

2335

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order
	Themes and Tracks

